This file is indexed.

/usr/share/pyshared/neo/io/brainvisionio.py is in python-neo 0.3.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# -*- coding: utf-8 -*-
"""
Class for reading data from BrainVision product.

This code was originally made by L. Pezard (2010), modified B. Burle and S. More.

Supported : Read

Author: sgarcia
"""

import os
import re

import numpy as np
import quantities as pq

from neo.io.baseio import BaseIO
from neo.core import Segment, AnalogSignal, EventArray
from neo.io.tools import create_many_to_one_relationship


class BrainVisionIO(BaseIO):
    """
    Class for reading/writing data from BrainVision product (brainAmp, brain analyser...)

    Usage:
        >>> from neo import io
        >>> r = io.BrainVisionIO( filename = 'File_brainvision_1.eeg')
        >>> seg = r.read_segment(lazy = False, cascade = True,)



    """

    is_readable        = True
    is_writable        = False

    supported_objects  = [Segment, AnalogSignal, EventArray]
    readable_objects   = [Segment]
    writeable_objects  = [ ]

    has_header         = False
    is_streameable     = False

    read_params        = { Segment : [ ] }
    write_params       = { Segment : [ ] }

    name               = None
    extensions         = ['vhdr']

    mode = 'file'


    def __init__(self , filename = None) :
        """
        This class read/write a elan based file.

        **Arguments**
            filename : the filename to read or write
        """
        BaseIO.__init__(self)
        self.filename = filename


    def read_segment(self, lazy = False, cascade = True):

        ## Read header file (vhdr)
        header = readBrainSoup(self.filename)

        assert header['Common Infos']['DataFormat'] == 'BINARY', NotImplementedError
        assert header['Common Infos']['DataOrientation'] == 'MULTIPLEXED', NotImplementedError
        nb_channel = int(header['Common Infos']['NumberOfChannels'])
        sampling_rate = 1.e6/float(header['Common Infos']['SamplingInterval']) * pq.Hz

        fmt = header['Binary Infos']['BinaryFormat']
        fmts = { 'INT_16':np.int16, 'IEEE_FLOAT_32':np.float32,}
        assert fmt in fmts, NotImplementedError
        dt = fmts[fmt]

        seg = Segment(file_origin = os.path.basename(self.filename), )
        if not cascade : return seg

        # read binary
        if not lazy:
            binary_file = os.path.splitext(self.filename)[0]+'.eeg'
            sigs = np.memmap(binary_file , dt, 'r', ).astype('f')

            n = int(sigs.size/nb_channel)
            sigs = sigs[:n*nb_channel]
            sigs = sigs.reshape(n, nb_channel)

        for c in range(nb_channel):
            name, ref, res, units = header['Channel Infos']['Ch%d' % (c+1,)].split(',')
            units = pq.Quantity(1, units.replace('ยต', 'u') )
            if lazy:
                signal = [ ]*units
            else:
                signal = sigs[:,c]*units
            anasig = AnalogSignal(signal = signal,
                                                channel_index = c,
                                                name = name,
                                                sampling_rate = sampling_rate,
                                                )
            if lazy:
                anasig.lazy_shape = -1
            seg.analogsignals.append(anasig)

        # read marker
        marker_file = os.path.splitext(self.filename)[0]+'.vmrk'
        all_info = readBrainSoup(marker_file)['Marker Infos']
        all_types = [ ]
        times = [ ]
        labels = [ ]
        for i in range(len(all_info)):
            type_, label, pos, size, channel = all_info['Mk%d' % (i+1,)].split(',')[:5]
            all_types.append(type_)
            times.append(float(pos)/sampling_rate.magnitude)
            labels.append(label)
        all_types = np.array(all_types)
        times = np.array(times) * pq.s
        labels = np.array(labels, dtype = 'S')
        for type_ in np.unique(all_types):
            ind = type_  == all_types
            if lazy:
                ea = EventArray(name = str(type_))
                ea.lazy_shape = -1
            else:
                ea = EventArray( times = times[ind],
                                    labels  = labels[ind],
                                    name = str(type_),
                                    )
            seg.eventarrays.append(ea)


        create_many_to_one_relationship(seg)
        return seg






def readBrainSoup(filename):
    section = None
    all_info = { }
    for line in open(filename , 'rU'):
        line = line.strip('\n').strip('\r')
        if line.startswith('['):
            section = re.findall('\[([\S ]+)\]', line)[0]
            all_info[section] = { }
            continue
        if line.startswith(';'):
            continue
        if '=' in line and len(line.split('=')) ==2:
            k,v = line.split('=')
            all_info[section][k] = v
    return all_info