This file is indexed.

/usr/share/pyshared/multipletau/_multipletau.py is in python-multipletau 0.1.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
#!/usr/bin/python
# -*- coding: utf-8 -*-
""" 
    A multiple-τ algorithm for Python 2.7 and 3.x.
    
    Copyright (c) 2014 Paul Müller

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions are
    met:

      1. Redistributions of source code must retain the above copyright
         notice, this list of conditions and the following disclaimer.
       
      2. Redistributions in binary form must reproduce the above copyright
         notice, this list of conditions and the following disclaimer in
         the documentation and/or other materials provided with the
         distribution.

      3. Neither the name of multipletau nor the names of its contributors
         may be used to endorse or promote products derived from this
         software without specific prior written permission.

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INFRAE OR
    CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""

from __future__ import division

import numpy as np
import warnings

__all__ = ["autocorrelate", "correlate", "correlate_numpy"]


def autocorrelate(a, m=16, deltat=1, normalize=False,
                  copy=True, dtype=None):
    """ 
    Autocorrelation of a 1-dimensional sequence on a log2-scale.
    
    This computes the correlation according to 
    :py:func:`numpy.correlate` for positive :math:`k`  on a base 2
    logarithmic scale.

        numpy.correlate(a, a, mode="full")[len(a)-1:]  

        :math:`z_k = \Sigma_n a_n a_{n+k}`


    Note that only the correlation in the positive direction is
    computed.

    Parameters
    ----------
    a : array_like
        input sequence of real numbers
    m : even integer
        defines the number of points on one level, must be an
        even integer
    deltat : float
        distance between bins
    normalize : bool
        normalize the result to the square of the average input
        signal and the factor `M-k`.
    copy : bool
        copy input array, set to False to save memory
    dtype : dtype, optional
        The type of the returned array and of the accumulator in 
        which the elements are summed.  By default, the dtype of 
        `a` is used.


    Returns
    -------
    autocorrelation : ndarray
        Nx2 array containing lag time and autocorrelation


    Notes
    -----
    The algorithm computes the correlation with the convention of the
    curve decaying to zero.
    
    For experiments like e.g. fluorescence correlation spectroscopy,
    the signal can be normalized to `M-k` by invoking:
    
           normalize = True

    For emulating the numpy.correlate behavior on a logarithmic
    scale (default behavior) use:

           normalize = False


    Examples
    --------
    >>> from numpy import dtype
    >>> from multipletau import autocorrelate
    >>> autocorrelate(range(42), m=2, dtype=dtype(float))
    array([[  1.00000000e+00,   2.29600000e+04],
           [  2.00000000e+00,   2.21000000e+04],
           [  4.00000000e+00,   2.03775000e+04],
           [  8.00000000e+00,   1.50612000e+04]])

    """
    traceavg = np.average(a)
    if normalize and traceavg == 0:
        raise ZeroDivisionError("Normalization not possible. "+
                     "The average of the input *binned_array* is zero.")

    trace = np.array(a, dtype=dtype, copy=copy)
    dtype = trace.dtype

    if dtype.kind in ["b","i","u"]:
        warnings.warn("Converting input data type ({}) to float.".
                      format(dtype))
        dtype = np.dtype(float)
        trace = np.array(a, dtype=dtype, copy=copy)
    
    # Complex data
    if dtype.kind == "c":
        raise NotImplementedError(
              "Please use `multipletau.correlate` for complex data.")

    
    # Check parameters
    if np.around(m/2) != m/2:
        mold = 1*m
        m = int((np.around(m/2)+1) * 2)
        warnings.warn("Invalid value of m={}. Using m={} instead"
                      .format(mold,m))
    else:
        m = int(m)

    N = N0 = len(trace)
    
    # Find out the length of the correlation function.
    # The integer k defines how many times we can average over
    # two neighboring array elements in order to obtain an array of
    # length just larger than m.
    k = int(np.floor(np.log2(N/m)))

    # In the base2 multiple-tau scheme, the length of the correlation
    # array is (only taking into account values that are computed from
    # traces that are just larger than m):  
    lenG = np.int(np.floor(m + k*m/2))
        
    G = np.zeros((lenG, 2), dtype=dtype)

    normstat = np.zeros(lenG, dtype=dtype)
    normnump = np.zeros(lenG, dtype=dtype)
    
    # We use the fluctuation of the signal around the mean
    if normalize:
        trace -= traceavg
    if N < 2*m:
        # Otherwise the following for-loop will fail:
        raise ValueError("len(binned_array) must be larger than 2m.")
    ## Calculate autocorrelation function for first m bins
    # Discrete convolution of m elements
    for n in range(1,m+1):
        G[n-1,0] = deltat * n
        # This is the computationally intensive step
        G[n-1,1] = np.sum(trace[:N-n]*trace[n:], dtype=dtype)
        normstat[n-1] = N-n
        normnump[n-1] = N
    # Now that we calculated the first m elements of G, let us
    # go on with the next m/2 elements.
    # Check if len(trace) is even:
    if N%2 == 1:
        N -= 1
    # Add up every second element
    trace = (trace[:N:2]+trace[1:N+1:2])/2
    N /= 2
    ## Start iteration for each m/2 values
    for step in range(1,k+1):
        ## Get the next m/2 values via correlation of the trace
        for n in range(1,int(m/2)+1):
            idx = int(m + n - 1 + (step-1)*m/2)
            if len(trace[:N-(n+m/2)]) == 0:
                # This is a shortcut that stops the iteration once the
                # length of the trace is too small to compute a corre- 
                # lation. The actual length of the correlation function 
                # does not only depend on k - We also must be able to 
                # perform the sum with repect to k for all elements.
                # For small N, the sum over zero elements would be
                # computed here.
                #
                # One could make this for loop go up to maxval, where
                #   maxval1 = int(m/2)
                #   maxval2 = int(N-m/2-1)
                #   maxval = min(maxval1, maxval2)
                # However, we then would also need to find out which 
                # element in G is the last element...
                G = G[:idx-1]
                normstat = normstat[:idx-1]
                normnump = normnump[:idx-1]
                # Note that this break only breaks out of the current
                # for loop. However, we are already in the last loop
                # of the step-for-loop. That is because we calculated
                # k in advance.
                break
            else:
                G[idx,0] = deltat * (n+m/2) * 2**step
                # This is the computationally intensive step
                G[idx,1] = np.sum(trace[:N-(n+m/2)]*trace[(n+m/2):],
                                  dtype=dtype)
                normstat[idx] = N-(n+m/2)
                normnump[idx] = N
        # Check if len(trace) is even:
        if N%2 == 1:
            N -= 1
        # Add up every second element
        trace = (trace[:N:2]+trace[1:N+1:2])/2
        N /= 2

    if normalize:
        G[:,1] /= traceavg**2 * normstat
    else:
        G[:,1] *= N0/normnump 
    
    return G



def correlate(a, v, m=16, deltat=1, normalize=False,
              copy=True, dtype=None):
    """ 
    Cross-correlation of two 1-dimensional sequences
    on a log2-scale.
    
    This computes the cross-correlation according to
    :py:func:`numpy.correlate` for positive :math:`k`  on a base 2
    logarithmic scale.
    
        numpy.correlate(a, v, mode="full")[len(a)-1:]
        
        :math:`z_k = \Sigma_n a_n v_{n+k}`
    
    Note that only the correlation
    in the positive direction is computed.
    
    
    Parameters
    ----------
    a, v : array_like
        input sequences with equal length
    m : even integer
        defines the number of points on one level, must be an
        even integer
    deltat : float
        distance between bins
    normalize : bool
        normalize the result to the square of the average input
        signal and the factor `M-k`.
    copy : bool
        copy input array, set to False to save memory
    dtype : dtype, optional
        The type of the returned array and of the accumulator in 
        which the elements are summed.  By default, the dtype of 
        `a` is used.


    Returns
    -------
    crosscorrelation : ndarray
        Nx2 array containing lag time and cross-correlation
        
    
    Notes
    -----
    The algorithm computes the correlation with the convention of the
    curve decaying to zero.
    
    For experiments like e.g. fluorescence correlation spectroscopy,
    the signal can be normalized to `M-k` by invoking:
    
           normalize = True

    For emulating the numpy.correlate behavior on a logarithmic
    scale (default behavior) use:

           normalize = False


    Examples
    --------
    >>> from numpy import dtype
    >>> from multipletau import correlate
    >>> correlate(range(42), range(1,43), m=2, dtype=dtype(float))
    array([[  1.00000000e+00,   2.38210000e+04],
           [  2.00000000e+00,   2.29600000e+04],
           [  4.00000000e+00,   2.12325000e+04],
           [  8.00000000e+00,   1.58508000e+04]])

    """
    ## See `autocorrelation` for better documented code.
    traceavg1 = np.average(v)
    traceavg2 = np.average(a)
    if normalize and traceavg1*traceavg2 == 0:
        raise ZeroDivisionError("Normalization not possible. "+
                     "The average of the input *binned_array* is zero.")

    trace1 = np.array(v, dtype=dtype, copy=copy)
    dtype = trace1.dtype

    if dtype.kind in ["b","i","u"]:
        warnings.warn(
              "Converting input data type ({}) to float.".format(dtype))
        dtype = np.dtype(float)
        trace1 = np.array(v, dtype=dtype, copy=copy)
    
    # Prevent traces from overwriting each other
    if a is v:
        # Force copying trace 2
        copy = True
        
    trace2 = np.array(a, dtype=dtype, copy=copy)

    # Complex data
    if dtype.kind == "c":
        trace1.imag *= -1
   
    # Check parameters
    if np.around(m/2) != m/2:
        mold = 1*m
        m = int((np.around(m/2)+1) * 2)
        warnings.warn("Invalid value of m={}. Using m={} instead"
                      .format(mold,m))
    else:
        m = int(m)
        
    if len(a) != len(v):
        raise ValueError("Input arrays must be of equal length.")
        
    N = N0 = len(trace1)
    # Find out the length of the correlation function.
    # The integer k defines how many times we can average over
    # two neighboring array elements in order to obtain an array of
    # length just larger than m.
    k = int(np.floor(np.log2(N/m)))
    
    # In the base2 multiple-tau scheme, the length of the correlation
    # array is (only taking into account values that are computed from
    # traces that are just larger than m):   
    lenG = np.int(np.floor(m + k*m/2))
        
    G = np.zeros((lenG, 2), dtype=dtype)
    normstat = np.zeros(lenG, dtype=dtype)
    normnump = np.zeros(lenG, dtype=dtype)
    
    # We use the fluctuation of the signal around the mean
    if normalize:
        trace1 -= traceavg1
        trace2 -= traceavg2
    if N < 2*m:
        # Otherwise the following for-loop will fail:
        raise ValueError("len(binned_array) must be larger than 2m.")
    # Calculate autocorrelation function for first m bins
    for n in range(1,m+1):
        G[n-1,0] = deltat * n
        G[n-1,1] = np.sum(trace1[:N-n]*trace2[n:])
        normstat[n-1] = N-n
        normnump[n-1] = N
    # Check if len(trace) is even:
    if N%2 == 1:
        N -= 1
    # Add up every second element
    trace1 = (trace1[:N:2]+trace1[1:N+1:2])/2
    trace2 = (trace2[:N:2]+trace2[1:N+1:2])/2
    N /= 2

    for step in range(1,k+1):
        # Get the next m/2 values of the trace
        for n in range(1,int(m/2)+1):
            idx = int(m + n - 1 + (step-1)*m/2)
            if len(trace1[:N-(n+m/2)]) == 0:
                # Abort
                G = G[:idx-1]
                normstat = normstat[:idx-1]
                normnump = normnump[:idx-1]
                break
            else:
                G[idx,0] = deltat * (n+m/2) * 2**step
                G[idx,1] = np.sum(trace1[:N-(n+m/2)]*trace2[(n+m/2):])
                normstat[idx] = N-(n+m/2)
                normnump[idx] = N

        # Check if len(trace) is even:
        if N%2 == 1:
            N -= 1
        # Add up every second element
        trace1 = (trace1[:N:2]+trace1[1:N+1:2])/2
        trace2 = (trace2[:N:2]+trace2[1:N+1:2])/2
        N /= 2

    if normalize:
        G[:,1] /= traceavg1*traceavg2 * normstat
    else:
        G[:,1] *= N0/normnump 
    
    return G



def correlate_numpy(a, v, deltat=1, normalize=False,
                     dtype=None, copy=True):
    """
    Convenience function that wraps around numpy.correlate and
    returns the data as multipletau.correlate does.
        
    Parameters
    ----------
    a, v : array_like
        input sequences
    deltat : float
        distance between bins
    normalize : bool
        normalize the result to the square of the average input
        signal and the factor (M-k). The resulting curve follows
        the convention of decaying to zero for large lag times.
    copy : bool
        copy input array, set to False to save memory
    dtype : dtype, optional
        The type of the returned array and of the accumulator in 
        which the elements are summed.  By default, the dtype of 
        `a` is used.

    Returns
    -------
    crosscorrelation : ndarray
        Nx2 array containing lag time and cross-correlation
    """
    
    avg = np.average(a)
    vvg = np.average(v)
    
    if dtype is None:
        dtype = a.dtype
    
    if len(a) != len(v):
        raise ValueError("Arrays must be of same length.")

    ab = np.array(a, dtype=dtype, copy=copy)
    vb = np.array(v, dtype=dtype, copy=copy)

    Gd = np.correlate(ab-avg, vb-vvg, mode="full")[len(ab)-1:]

    if normalize:
        N = len(Gd)
        m = N - np.arange(N)
        Gd /= m * avg * vvg
    G = np.zeros((len(Gd),2))
    G[:,1] = Gd        
    G[:,0] = np.arange(len(Gd))*deltat
    return G