This file is indexed.

/usr/share/pyshared/mlpy/_dwtfs.py is in python-mlpy 2.2.0~dfsg1-2.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
## This file is part of mlpy.
## Discrete Wavelet Transform (DWT).

## This is an implementation of Discrete Wavelet Transform described in:
## Prabakaran Subramani, Rajendra Sahu and Shekhar Verma.
## 'Feature selection using Haar wavelet power spectrum'.
## In BMC Bioinformatics 2006, 7:432.
    
## This code is written by Giuseppe Jurman, <jurman@fbk.eu> and Davide Albanese, <albanese@fbk.eu>.
## (C) 2008 Fondazione Bruno Kessler - Via Santa Croce 77, 38100 Trento, ITALY.

## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.

## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.

## You should have received a copy of the GNU General Public License
## along with this program.  If not, see <http://www.gnu.org/licenses/>.

__all__ = ['Dwt', 'haar', 'haar_spectrum']

import math
from numpy import *

SQRT_2 = sqrt(2.0)
LOG_2  = log(2.0)


def haar(d):
    """
    Haar wavelet decomposition.
    """
    
    N = log(d.shape[0])
    n = int(ceil(N / LOG_2))
    two_n = 2**n
    
    dwt = zeros(two_n, dtype = float)
    dwt[0: d.shape[0]] = d
    
    for j in range(n, 0, -1):
        offset = two_n - 2**j
        dproc = dwt[offset::].copy()
        
        for i in range(dproc.shape[0] / 2):
            dwt[offset + i] = \
                       (dproc[2 * i] - dproc[2 * i + 1]) / SQRT_2
            
            dwt[offset + dproc.shape[0] / 2 + i] = \
                       (dproc[2 * i] + dproc[2 * i + 1]) / SQRT_2
            
    return dwt[::-1]


def haar_spectrum(dwt):
    """
    Compute spectrum from wavelet decomposition.
    """
    
    N = log(dwt.shape[0])
    n = int(N / LOG_2)
    
    spec = zeros(n + 1, dtype = float)
    
    spec[0] = dwt[0] * dwt[0]
    if(dwt[0] < 0.0):
        spec[0] = -spec[0]
        
    for j in range(1, n + 1):
        spec[j] = sum(dwt[2**(j - 1): 2**j]**2)
        
    return spec


def rpv(s1, s2):
    """
    Relative Percentage Variation (RPV).
    """
    
    mean_s1 = mean(s1)
    mean_s2 = mean(s2)
    return (mean_s1 - mean_s2) / mean_s1 * 100


def arpv(s1, s2):
    """
    Absolute Relative Percentage Variation (ARPV).
    """
    
    return sqrt(abs(rpv(s1, s2)) * abs(rpv(s2, s1)))
    

def crpv(s1, s2, f, y):
    """
    Correlation Relative Percentage Variation (CRPV).
    """

    return arpv(s1, s2) * abs(correlate(f, y))
    

def compute_dwt(x, y, specdiff = 'rpv'):
    """
    Compute DWT.
    """
   
    pidx = where(y ==  1)
    nidx = where(y == -1)
    
    w = zeros(x.shape[1], dtype = float)
	
    for f in range(x.shape[1]):
        fp = x[pidx, f][0]
        fn = x[nidx, f][0]
        
        phaar = haar(fp)
        nhaar = haar(fn)
        
        s1 = haar_spectrum(phaar)
        s2 = haar_spectrum(nhaar)

        if specdiff == 'rpv':
            w[f] = rpv(s1, s2)

        elif specdiff == 'arpv':
            w[f] = arpv(s1, s2)

        elif specdiff == 'crpv':
            w[f] = crpv(s1, s2, x[:, f], y)

    return w


class Dwt:
    """Discrete Wavelet Transform (DWT).

    Example:
    
    >>> import numpy as np
    >>> import mlpy
    >>> xtr = np.array([[1.0, 2.0, 3.1, 1.0],  # first sample
    ...                 [1.0, 2.0, 3.0, 2.0],  # second sample
    ...                 [1.0, 2.0, 3.1, 1.0]]) # third sample
    >>> ytr = np.array([1, -1, 1])             # classes
    >>> mydwt = mlpy.Dwt()                   # initialize dwt class
    >>> mydwt.weights(xtr, ytr)              # compute weights on training data
    array([ -2.22044605e-14,  -2.22044605e-14,   6.34755463e+00,  -3.00000000e+02])
    """

    SPECDIFFS = ['rpv', 'arpv', 'crpv']

    def __init__(self, specdiff = 'rpv'):
        """Initialize the Dwt class.

        Input
        
          * *specdiff* - [string] spectral difference method ('rpv', 'arpv', 'crpv')
        """
        
        
        if not specdiff in self.SPECDIFFS:
            raise ValueError("specdiff (spectral difference) must be in %s" % self.SPECDIFFS)
        
        self.__specdiff = specdiff
        self.__classes  = None

    def weights(self, x, y):
        """Return ABSOLUTE feature weights.
        
        :Parameters:
          x : 2d ndarray float (samples x feats)
            training data
          y : 1d ndarray integer (-1 or 1)
            classes
        
        :Returns:
          fw :  1d ndarray float
            feature weights
        """


        self.__classes = unique(y)

        if self.__classes.shape[0] != 2:
            raise ValueError("DTW algorithm works only for two-classes problems")

        if self.__classes[0] != -1 or self.__classes[1] != 1:
            raise ValueError("DTW algorithm works only for 1 and -1 classes")

        w = compute_dwt(x, y, self.__specdiff)

        return w