This file is indexed.

/usr/share/pyshared/gluon/contrib/timecollect.py is in python-gluon 1.99.7-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Only Python 2.6 and up, because of NamedTuple.
import time
from collections import namedtuple
Score = namedtuple('Score', ['tag', 'stamp'])

class TimeCollector(object):
    def __init__(self):
        '''The first time stamp is created here'''
        self.scores = [Score(tag='start',stamp=time.clock())]
    def addStamp(self, description):
        '''Adds a new time stamp, with a description.'''
        self.scores.append(Score(tag=description, stamp=time.clock()))
    def _stampDelta(self, index1, index2):
        '''Private utility function to clean up this common calculation.'''
        return self.scores[index1].stamp - self.scores[index2].stamp
    def getReportItems(self, orderByCost=True):
        '''Returns a list of dicts. Each dict has 
            start (ms), 
            end (ms), 
            delta (ms), 
            perc (%),
            tag (str)
        '''
        self.scores.append(Score(tag='finish', stamp=time.clock()))
        total_time = self._stampDelta(-1, 0)
        data = []
        for i in range(1, len(self.scores)):
            delta = self._stampDelta(i, i-1)
            if abs(total_time) < 1e-6:
                perc = 0
            else:
                perc = delta / total_time * 100
            data.append(
                dict(
                    start = self._stampDelta(i-1, 0) * 1000,
                    end = self._stampDelta(i, 0) * 1000,
                    delta = delta * 1000,
                    perc = perc,
                    tag = self.scores[i].tag
                    ) 
                )
        if orderByCost:    
            data.sort(key=lambda x: x['perc'], reverse=True)
        return data
    def getReportLines(self, orderByCost=True):
        '''Produces a report of logged time-stamps as a list of strings.
        if orderByCost is False, then the order of the stamps is
        chronological.'''
        data = self.getReportItems(orderByCost)
        headerTemplate = '%10s | %10s | %10s | %11s | %-30s'
        headerData = ('Start(ms)', 'End(ms)', 'Delta(ms)', 'Time Cost',
                      'Description')        
        bodyTemplate = '%(start)10.0f | %(end)10.0f | %(delta)10.0f |' \
          + ' %(perc)10.0f%% | %(tag)-30s' 
        return [headerTemplate % headerData] + [bodyTemplate % d for d in data]
    def getReportText(self, **kwargs):
        return '\n'.join(self.getReportLines(**kwargs))
    def restart(self):
        self.scores = [Score(tag='start',stamp=time.clock())]
            
if __name__=='__main__':
    print('')
    print('Testing:')
    print('')
    
    # First create the collector
    t = TimeCollector()
    x = [i for i in range(1000)]
    # Every time some work gets done, add a stamp
    t.addStamp('Initialization Section')
    x = [i for i in range(10000)]
    t.addStamp('A big loop')
    x = [i for i in range(100000)]
    t.addStamp('calling builder function')
    # Finally, obtain the results
    print('')
    print(t.getReportText())
    # If you want to measure something else in the same scope, you can
    # restart the collector.
    t.restart()
    x = [i for i in range(1000000)]
    t.addStamp('Part 2')
    x = [i for i in range(1000000)]
    t.addStamp('Cleanup')
    # And once again report results
    print('')
    print(t.getReportText())
    t.restart()                         
    for y in range(1, 200, 20):
        x = [i for i in range(10000)*y]
        t.addStamp('Iteration when y = ' + str(y))

    print('')
    # You can turn off ordering of results
    print(t.getReportText(orderByCost=False))