This file is indexed.

/usr/lib/python2.7/dist-packages/expeyes/eyesj.py is in python-expeyes 3.2.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
'''
EYES for Young Engineers and Scientists -Junior (EYES Junior 1.0)
Python library to communicate to the PIC24FV32KA302 uC running 'eyesj.c'
Author  : Ajith Kumar B.P, bpajith@gmail.com, ajith@iuac.res.in
License : GNU GPL version 3
Started on 25-Mar-2012
Last edit : 25-Oct-2012, added storing calibration to EEPROM
*
The micro-controller pins used are mapped into 13 I/O channels (numbered 0 to 12)
and act like a kind of logical channels.  The Python function calls refer to them
using the corresponding number, ie 0 => A0. 

 * 0 : A0, Analog Comaparator(A5) output.
 * 1 : A1, -5V to +5V range Analog Input 
 * 2 : A2, -5V to +5V range Analog Input 
 * 3 : IN1 , Can function as Digital or 0 to 5V Analog Input
 * 4 : IN2, Can function as Digital or 0 to 5V Analog Input
 * 5 : SEN, Simial to A3 & A4, but has a 5K external pullup resistor (Comp input)
 * 6 : SQR1-read, Input wired to SQR1 output
 * 7 : SQR2-read,  Input wired to SQR2 output
 * 8 : SQR1 control, 0 to 5V programmable Squarewave. Setting Freq = 0 means 5V, Freq = -1 means 0V
 * 9 : SQR2 control, 0 to 5V programmable Squarewave
 * 10: Digital output OD1, 
 * 11: CCS, Controls the 1mA constant current source. 
 * A12: Analog Input  AN0 / RA0  (dummy entry for RA0), special case
'''

import serial, struct, math, time, commands, sys, os, os.path
import __builtin__		# Need to do this since 'eyes.py' redefines 'open'

import gettext # For localization, inputs from Georges (georges.khaznadar@free.fr)
gettext.bindtextdomain('expeyes')
gettext.textdomain('expeyes')
_ = gettext.gettext


#Commands with One byte argument (41 to 80) 
GETVERSION  =   1
READCMP     =   2	# Status of comparator output 
READTEMP    =   3	# IC Temperature
GETPORTB	=   4

#Commands with One byte argument (41 to 80) 
READADC		=	41	# Read the ADC channel
GETSTATE    =   42  # Digital Input Status
NANODELAY   =   43  # from IN2 to SEN, using CTMU, send current range
SETADCREF   =   44  # non-zero value selects external +Vref option
READADCSM   =	45	# Read the ADC channel, in Sleep Mode
IRSEND1     =   46  # Sends one byte over IR on SQR1
RDEEPROM	=   47	# Read nwords starting from addr

# Commands with Two bytes argument (81 to 120)
R2RTIME     =   81  # Time from rising edge to rising edge,arguments pin1 & pin2
R2FTIME     =   82      
F2RTIME     =   83      
F2FTIME     =   84      
MULTIR2R    =   85  # Time between rising edges, arguments pin & skipcycles    
SET2RTIME   =   86  # From a Dout transition to the Din transition
SET2FTIME   =   87  #
CLR2RTIME   =   88  #   
CLR2FTIME   =   89  #    
HTPUL2RTIME =   90  # High True Pulse to HIGH
HTPUL2FTIME =   91  # High True Pulse to LOW
LTPUL2RTIME =   92  #
LTPUL2FTIME =   93  #
SETPULWIDTH =   94  # Width setting for PULSE2* functions    
SETSTATE    =   95  # SQR1, SQR2, OD & CCS only
SETDAC		=   96	# 12 bit DAC setting
SETCURRENT	=   97	# ADC channel, CTMU Irange
SETACTION   =   98  # capture modifiers, action, target pin
SETTRIGVAL  =   99  # Analog trigger level, 2 bytes


# Commands with Three bytes argument (121 to 160)    
SETSQR1		=  121	# Square wave on OSC2
SETSQR2		=  122	# Square wave on OSC3
WREEPROM	=  123  # write 1 word to the address

#Commands with Four bytes argument (161 to 200)
MEASURECV   = 163    # ch, irange, duration
SETPWM1     = 164    # PWM on SQR1 output. Send ocxrx and ocx
SETPWM2     = 165    # PWM on SQR1 output.
IRSEND4     = 166    # 4 byte  IR

#Commands with Five bytes argument (201 to 240)
CAPTURE  	= 201	 # Ch, 2 byte NS, 2 byte TG 
CAPTURE_HR	= 202	 # Ch, 2 byte NS, 2 byte TG
SETSQRS		= 203    # Set both square waves, with specified phase difference. scale, ocr, diff

#Commands with Six bytes argument (241 to 255)
CAPTURE2  	= 241	 # ch1, ch2, NS, TG (1, 1, 2, 2)bytes
CAPTURE2_HR	= 242	 # ch1, ch2, NS, TG (1, 1, 2, 2)bytes
CAPTURE3	= 243	 # ch1&ch2, ch3, ns , tg
CAPTURE4	= 244	 # ch1&ch2, ch3&ch4, ns , tg

# Actions before capturing waveforms
AANATRIG    = 0      # Trigger on analog input level, set by SETRIGVAL
AWAITHI		= 1
AWAITLO		= 2
AWAITRISE	= 3
AWAITFALL	= 4
ASET		= 5
ACLR		= 6
APULSEHT	= 7
APULSELT	= 8

BUFSIZE     = 1800       # status + adcinfo + 1800 data

#Serial devices to search for EYES hardware.  
linux_list = ['/dev/ttyACM0','/dev/ttyACM1','/dev/ttyACM2', '/dev/ttyACM3', '/dev/ttyAMA0']  

def open(dev = None):
	'''
	If EYES hardware in found, returns an instance of 'Eyes', else returns None.
	'''
	obj = Eyesjun()
	if obj.fd != None:
		obj.disable_actions()			# Disable capture modifiers
		obj.load_calibration()
		return obj
	print _('Could not find EYES Junior hardware')
	print _('Check the connections.')

BAUDRATE = 115200			# Serial communication

class Eyesjun:
	fd = None						# init should fill this
	DACMAX = 5.000					# DAC upper limit
	DACM = 4095.0/5
	tgap =  0.004					# 0.004 ms shift between two channels of capture2
	m12 = [5.0/4095] + [10.0/4095]*2 + [5.0/4095]*10
	m8 =  [5.0/255]  + [10.0/255] *2 + [5.0/255] *10
	c = [0.0] + [-5.0]*2 + [0.0]*10
	sen_pullup = 5100.0
	cap_calib = 1.0				# Default values, to be loaded from file.
	socket_cap = 30.0			# Set by calibrate.py
	msg = ''

	def __init__(self, dev = None):
		"""
		Searches for EYES hardware on USB-to-Serial adapters. Presence of the
		device is done by reading the version string. Timeout set to 4 sec
		TODO : Supporting more than one EYES on a PC to be done. The question is how to find out 
		whether a port is already open or not, without doing any transactions to it.
		"""
		
		if os.name == 'nt':				# for Windows machines, search COM1 to COM255
			device_list = []
			for k in range(1,255):
				s = 'COM%d'%k
				device_list.append(s)
			for k in range(1,11):
				device_list.append(k)
		else:
			device_list = []		# Gather unused devices from linux_list
			for dev in linux_list:
				res = commands.getoutput('lsof -t '+ str(dev))
				if res == '':
					device_list.append(dev)
		
		for dev in device_list:
			try:
				handle = serial.Serial(dev, BAUDRATE, stopbits=1, timeout = 0.3) #8,1,no parity
			except:
				continue

			self.msg = _('Port %s is existing ') %dev
			if handle.isOpen() != True:
				print _('but could not open')
				continue
			self.msg += _('and opened. ')
			handle.flush()
			time.sleep(.5)
			while handle.inWaiting() > 0 :
				handle.flushInput()
			handle.write(chr(GETVERSION))
			res = handle.read(1)
			ver = handle.read(5)		# 5 character version number
			if ver[:2] == 'ej':
				self.device = dev
				self.fd = handle
				self.version = ver
				handle.timeout = 4.0	# r2rtime on .7 Hz require this
				self.msg += 'Found EYES Junior version ' + ver
				return 		# Successful return
			else:			# If it is not our device close the file
				handle.close()
		print self.msg
		print _('No EYES Junior hardware detected')
		self.fd = None
#------------------------------------------------------------------------------------
	def sendByte(self,bval):
		self.fd.write(chr(bval))
		time.sleep(0.005)				# This delay is for MCP2200 + uC

	def sendInt(self,ival):
		self.fd.write(chr(ival & 255))
		time.sleep(0.005)				# This delay is for MCP2200 + uC
		self.fd.write(chr(ival >> 8))
		time.sleep(0.005)				# This delay is for MCP2200 + uC

	def get_version(self):
		self.sendByte(GETVERSION)
		res = self.fd.read(1)
		if res != 'D':
			p.msg = _('GETVERSION ERROR') + res
			return
		ver = self.fd.read(5)
		return ver

#-----------------------------------EEPROM----------------------------------
	def eeprom_write(self, addr, data):
		self.sendByte(WREEPROM)
		self.sendByte(addr)
		self.sendInt(data)
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('WREEPROM ERROR ') + res
			print _('WREEPROM ERROR'), res
			return None
		return 1			# number of words written

	def eeprom_read(self, addr):
		self.sendByte(RDEEPROM)
		self.sendByte(addr)
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('RDEEPROM ERROR ') + res
			return None
		res = self.fd.read(2)
		return ord(res[0]) | (ord(res[1]) << 8)

	def store_float(self, addr, data):	# store a floating point number to EEPROM
		ss = struct.pack('f', data)
		lo = ord(ss[0]) | (ord(ss[1]) << 8)
		hi  = ord(ss[2]) | (ord(ss[3]) << 8)
		if self.eeprom_write(addr, lo) == None:
			return None
		if self.eeprom_write(addr+1, hi) == None:
			return None
		return 1

	def restore_float(self, addr):		# restore a floating point number from EEPROM
		lo = self.eeprom_read(addr)
		hi = self.eeprom_read(addr+1)
		data = (hi << 16) | lo
		ss = struct.pack('I', data)
		res = struct.unpack('f', ss)
		return res[0]					# return the float

	AM1 = 0		# EEPROM location of the parameters, y = mx + c, for A1 and A2
	AC1 = 2
	AM2 = 4
	AC2 = 6
	ASOC = 8      # Socket cap IN1
	ACCF = 10     # Capacitance error factor
	ARP  = 12     # Pullup Resistance 

	def storeCF_a1a2(self, m1,c1,m2,c2): # slope & intercept for A1 and A2		
		if self.store_float(self.AM1, m1) == None:
			return None
		self.store_float(self.AC1, c1)
		self.store_float(self.AM2, m2)
		self.store_float(self.AC2, c2)
		return 4		# Number of items written

	def storeCF_cap(self, soc, ccf):  	#Socket capacitance and error factor
		if self.store_float(self.ASOC, soc) == None:
			return None
		self.store_float(self.ACCF, ccf)
		return 2

	def storeCF_sen(self, r):			# pullup resistor value
		if self.store_float(self.ARP, r) == None:
			return None
		return 1

	def load_calibration(self):
		try:
			m1 = self.restore_float(self.AM1)
			c1 = self.restore_float(self.AC1)
			m2 = self.restore_float(self.AM2)
			c2 = self.restore_float(self.AC2)
			m = 10.0/4095
			c = -5.0
			dm = m * 0.02			# maximum 2% deviation
			dc = 5 * 0.02
			#print m1,c1,m2,c2, dm, dc
			if abs(m1-m) < dm and abs(m2-m) < dm and abs(c1-c) < dc and abs(c2-c) < dc:
				self.m12[1] = m1
				self.c[1] = c1
				self.m12[2] = m2
				self.c[2] = c2
				self.m8[1] = m1 * 4095./255		# Scale factors for 8 bit read
				self.m8[2] = m2 * 4095./255
				#print _('Calibration Factors :'), m1,c1,m2,c2
			else:
				print _('Invalid Calibration factors for A1,A2'), m1,c1,m2,c2
		except:
			print _('Could not load A1 & A2 Calibration')

		try:
			soc = self.restore_float(self.ASOC)
			ccf = self.restore_float(self.ACCF)
			if (.8 < ccf < 1.2) and (20 < soc < 50):
				self.cap_calib = ccf
				self.socket_cap = soc
				#print _('IN1 Calibration :'), ccf, soc
			else:
				print _('Invalid Calibration factors for IN1'), soc, ccf
		except:
			print _('Could not load IN1 Capacitor Calibration')

		try:
			r = self.restore_float(self.ARP)
			if 4950 < r < 5250:
				self.sen_pullup = r
				#print _('SEN Pullup :'), r
			else:
				print _('Invalid Pullup resistor value'), r
		except:
			print _('Could not load SEN Pullup calibration')

#------------------------- Infrared comm. ----------------
	def irsend1(self, d1):
		self.sendByte(IRSEND1)
		self.sendByte(d1)
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('IRSEND1 ERROR ') + res
			print _('IRSEND1 ERROR'), res
			return
		return 1

	def irsend4(self, d1,d2,d3,d4):
		self.sendByte(IRSEND4)
		self.sendByte(d1)
		self.sendByte(d2)
		self.sendByte(d3)
		self.sendByte(d4)
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('IRSEND4 ERROR ')+ res
			print _('IRSEND4 ERROR'), res
			return
		return 1

#--------------------------------------CTMU -------------
	ctmui = [550, 0.55, 5.5, 55.0]
	def nano_delay(self, i):
		'''
		Using the CTMU of PIC, measure r2r from IN2 or SEN. uses cap of IN1. Incomplete
		ch = 3
		self.sendByte(NANODELAY)
		self.sendByte(self.rval[i])
		res = self.fd.read(1)
		if res != 'D':
			print _('MEASUREDELAY ERROR'), res
			return
		res = self.fd.read(2)
		iv = ord(res[0]) | (ord(res[1]) << 8)
		print iv
		v = self.m12[ch] * iv + self.c[ch]
		return v
		'''		
		return

	def measure_cv(self, ch, ctime, i = 5.5):  
		'''
		Using the CTMU of PIC, charges a capacitor connected to IN1, IN2 or SEN, 
		for 'ctime' microseconds and then mesures the voltage across it.
		The value of current can be set to .55uA, 5.5 uA, 55uA or 550 uA
		'''
		if i > 500:		# 550 uA
			irange = 0
		elif i > 50:	#55 uA
			irange = 3
		elif i > 5:		#5.5 uA,  default value
			irange = 2
		else:			# 0.55 uA
			irange = 1

		if ch not in [3,4]:
			self.msg = _('Current to be set only on IN1(3) or IN2(4)')
			print _('Current to be set only on IN1 or IN2')
			return
		self.sendByte(MEASURECV)
		self.sendByte(ch)
		self.sendByte(irange)
		self.sendInt(ctime)
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('MEASURECV ERROR ') + res
			print _('MEASURECV ERROR'), res
			return 
		res = self.fd.read(2)
		iv = ord(res[0]) | (ord(res[1]) << 8)
		v = self.m12[ch] * iv + self.c[ch]
		return v

	def measure_cap_raw(self, ctmin = 10):
		'''
		Measures the capacitance connected between IN1 and GND. Stray capacitance 
		should be subtracted from the measured value. Measurement is done by charging 
		the capacitor with 5.5 uA for a given time interval. Any error in the value of
		current is corrected by calibrating.
		'''
		for ctime in range(ctmin, 1000, 10):
			v = self.measure_cv(3, ctime, 5.5)   # 5.5 uA range is chosen
			if v > 2.0: break
		if (v > 4) or (v == 0):
			self.msg = _('Error measuring capacitance %5.3f') %v
			print _('Error measuring capacitance'), v
			return None
		return 5.5 * ctime / v    # returns value in pF 

	def measure_cap(self, ctmin = 10):
		'''
		Measures the capacitance connected between IN1 and GND.
		Returns the value after applying corrections.
		'''
		cap = self.measure_cap_raw()
		if cap != None:
			return (cap - self.socket_cap) * self.cap_calib
		else:
			return None

	def measure_res(self):
		'''
		Measures the resistance connected between SEN and GND.
		'''
		v = self.get_voltage(5)
		if .1 < v < 4.9:
			return self.sen_pullup * v /(5-v)
		else:
			self.msg = _('Resistance NOT in 100 Ohm to 100 kOhm range')
			print _('Resistance NOT in 100 Ohm to 100 kOhm range')
			return

	def set_current(self, ch, i): # channel 3 or 4, 0 means stop CTMU
		'''
		Sets CTMU current 'i' on a channel 'ch' and returns the voltage measured 
		across the load. Allowed values of current are .55, 5.5, 55 and 550 uAmps.
		'''
		if i > 500:		# 550 uA
			irange = 0
		elif i > 50:	#55 uA
			irange = 3
		elif i > 5:		#5.5 uA,  default value
			irange = 2
		else:			# 0.55 uA
			irange = 1
		if i == 0 : 		# indication to stop CTMU
			ch = 0 
		if ch not in [0,3,4]:  # 0 means stopping CTMU
			self.msg = _('Current to be set only on IN1 or IN2')
			print _('Current to be set only on IN1 or IN2')
			return
		self.sendByte(SETCURRENT)
		self.sendByte(ch)
		self.sendByte(irange)
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('SETCURRENT ERROR') + res
			print _('SETCURRENT ERROR'), res
			return 
		res = self.fd.read(2)
		iv = ord(res[0]) | (ord(res[1]) << 8)
		v = self.m12[ch] * iv + self.c[ch]
		return v

	def read_temp(self):
		'''
		Reads the temperature of uC, currently of no use. Have to see whether this can be used for correcting
		the drift of the 5V regulator with temeperature.
		'''
		self.sendByte(READTEMP)
		res = self.fd.read(1)
		if res != 'D':
			print _('READTEMP error '), res
			self.msg = _('READTEMP error') + res
			return
		res = self.fd.read(2)
		iv = ord(res[0]) | (ord(res[1]) << 8)
		return iv

#---------- Time Interval Measurements ----------------------

	def tim_helper(self, cmd, src, dst):
		'''
		Helper function for all Time measurement calls. Command, Source and destination pins are imputs.
		Returns time in microseconds, -1 on error.
		'''
		if cmd == MULTIR2R:
			if src not in [0,3,4,5,6,7]:
				print _('Pin should be digital input capable: 0,3,4,5,6 or 7')
				self.msg = _('Pin should be digital input capable: 0,3,4,5,6 or 7')
				return -1
			if dst > 249:
				self.msg = _('skip exceeded 249 edges')
				print _('skip exceeded 249 edges')
				return -1
		if cmd in [R2RTIME, R2FTIME, F2RTIME, F2FTIME]:
			if src not in [0,3,4,5,6,7] or dst not in [0,3,4,5,6,7]:
				self.msg = _('Both pins should be digital input capable: 0,3,4,5,6 or 7')
				print _('Both pins should be digital input capable: 0,3,4,5,6 or 7')
				return -1
		if cmd in [SET2RTIME, SET2FTIME, CLR2RTIME, CLR2FTIME, HTPUL2RTIME, HTPUL2FTIME, LTPUL2RTIME, LTPUL2FTIME]:
			if src not in [8,9,10,11]:
				self.msg = _('Starting pin should be digital output capable: 8,9,10 or 11')
				print _('Starting pin should be digital output capable: 8,9,10 or 11')
				return -1
			if dst not in [0,3,4,5,6,7]:
				self.msg = _('Destination pin should be digital input capable: 0,3,4,5,6 or 7')
				print _('Destination pin should be digital input capable: 0,3,4,5,6 or 7')
				return -1
		self.sendByte(cmd)	
		self.sendByte(src)	
		self.sendByte(dst)	
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('Time measurement command error')
			print _('Time measurement command %d error ') %cmd, res
			return -1.0
		res = self.fd.read(1)
		data = self.fd.read(4)
		raw = struct.unpack('I'* 1, data)		  # 32 bit data from T4/T5 counter, 0.125us cycles
		ncycle = raw[0] + 0				 		  # .25 usec correction
		return round(float(ncycle)*0.125)		  # returns in microseconds

#-------------------- Passive Time Interval Measurements ----------------------------------
	def r2rtime(self, pin1, pin2):
		'''
		Time between two rising edges. The pins must be distinct. For same pin, use multi_r2rtime
		'''
		return self.tim_helper(R2RTIME, pin1, pin2)

	def f2ftime(self, pin1, pin2):
		'''
		Time between two falling edges. The pins must be distinct. For same pin, use multi_r2rtime
		'''
		return self.tim_helper(F2FTIME, pin1, pin2)

	def r2ftime(self, pin1, pin2):
		'''
		Time between a rising edge to a falling edge. The pins could be same or distinct.
		'''
		return self.tim_helper(R2FTIME, pin1, pin2)

	def f2rtime(self, pin1, pin2):
		'''
		Time between a falling edge to a rising edge. The pins could be same or distinct.
		'''
		return self.tim_helper(F2RTIME, pin1, pin2)

	def multi_r2rtime(self, pin, skip=0):
		'''
		Time between rising edges, could skip desired number of edges in between. (pin, 9) will give time required for
		10 cycles of a squarewave, increases resolution.
		'''
		return self.tim_helper(MULTIR2R, pin, skip)

	def get_frequency(self, pin):
		'''
		This function measures the frequency of an external 0 to 5V PULSE on digital inputs, by calling multi_r2rtime().
		'''
		t = self.multi_r2rtime(pin)
		if t < 0:
			return t
		if 0 < t < 10000:
			t = self.multi_r2rtime(pin,9)
			return 1.0e7/t
		return 1.0e6 / t

# Active time interval measurements		
	def set2rtime(self, pin1, pin2):
		'''
		Time from setting pin1 to a rising edge on pin2.
		'''
		return self.tim_helper(SET2RTIME, pin1, pin2)

	def set2ftime(self, pin1, pin2):
		'''
		Time from setting pin1 to a falling edge on pin2.
		'''
		return self.tim_helper(SET2FTIME, pin1, pin2)

	def clr2rtime(self, pin1, pin2):
		'''
		Time from clearin pin1 to a rising edge on pin2.
		'''
		return self.tim_helper(CLR2RTIME, pin1, pin2)

	def clr2ftime(self, pin1, pin2):
		'''
		Time from clearing pin1 to a falling edge on pin2.
		'''
		return self.tim_helper(CLR2FTIME, pin1, pin2)

	def htpulse2rtime(self, pin1, pin2):
		'''
		Time from a HIGH True pulse on pin1 to a rising edge on pin2.
		'''
		return self.tim_helper(HTPUL2RTIME, pin1, pin2)

	def htpulse2ftime(self, pin1, pin2):
		'''
		Time from HIGH True pulse on pin1 to a falling edge on pin2.
		'''
		return self.tim_helper(HTPUL2FTIME, pin1, pin2)

	def ltpulse2rtime(self, pin1, pin2):
		'''
		Time from a LOW True pulse on pin1 to a rising edge on pin2.
		'''
		return self.tim_helper(LTPUL2RTIME, pin1, pin2)

	def ltpulse2ftime(self, pin1, pin2):
		'''
		Time from LOW True pulse on pin1 to a falling edge on pin2.
		'''
		return self.tim_helper(LTPUL2FTIME, pin1, pin2)

#------------------------- Digital I/O-----------------------------
	def set_state(self, pin, state):
		'''
		Sets the status of Digital outputs SQR1, SQR2, OD1 or CCS. It will work on SQR1 & SQR2 only if the frequency
		is set to zero.
		'''
		self.sendByte(SETSTATE)	
		self.sendByte(pin)	
		self.sendByte(state)	
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('SETSTATE error ')
			print _('SETSTATE error '), res
			return
		return state

	def get_state(self, pin):
		'''
		gets the status of the digital input pin. IN1, IN2 & SEN are set to digital mode before sensing input level.
		'''
		self.sendByte(GETSTATE)	
		self.sendByte(pin)	
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('GETSTATE error ')
			print _('GETSTATE error '), res
			return 
		res = self.fd.read(1)
		return ord(res)

	def get_portb(self):
		'''
		Reads portB, returns 16 bits of data.
		'''
		self.sendByte(GETPORTB)	
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('GETPORTB error ')
			print _('GETPORTB error '), res
			return 
		res = self.fd.read(2)
		raw = struct.unpack('H', res) 		 # 16 bit data in byte array
		print '%x'%raw
		return raw[0]

#---------------- Square Wave Generation & Measuring the Frequency ------------------
	def set_pwm(self, osc, ds, resol=14):        # osc and duty cycle, resolution 14 bits byn default
		'''
		Sets PWM on SQR1 / SQR2. The frequency is decided by the resolution in bits.
		'''
		if resol < 4 or resol > 16 or ds < 0 or ds > 100:
			return
		ocxrs = 2**resol
		ocx = int(0.01 * ds * ocxrs + 0.5)
		#print ocxrs, ocx
		
		if osc == 0:
			self.sendByte(SETPWM1)
		else:
			self.sendByte(SETPWM2)
		self.sendInt(ocxrs-1)					# ocxrs
		self.sendInt(ocx)					# ocx
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('SETPWM error ')
			print _('SETPWM error '), res
			return 
		return ds

	def set_sqr1_pwm(self, dc, resol=14):		# Duty cycle, resolution 14 bits (f = 488Hz) by default
		'''
		Sets 488 Hz PWM on SQR1. Duty cycle is specified in percentage. The third argument, PWM resolution, is 
		14 bits by default. Decreasing this by one doubles the frequency.
		'''
		return self.set_pwm(0,dc,resol)

	def set_sqr2_pwm(self, dc, resol = 14):    
		'''
		Sets 488 Hz PWM on SQR2. Duty cycle is specified in percentage. The third argument, PWM resolution, is 
		14 bits by default. Decreasing this by one doubles the frequency.
		'''
		return self.set_pwm(1,dc,resol)

	def set_sqr1_dc(self, volt):			
		'''
		PWM DAC on SQR1. Resolution is 10 bits (f = 7.8 kHz) by default. External Filter is required to get the DC
		The voltage can be set from 0 to 5 volts.
		'''
		return self.set_pwm(0, volt * 20.0, 10)/20  # 100% means 5 volts., 10 bit resolution, 8kHz 

	def set_sqr2_dc(self, volt):    
		'''
		PWM DAC on SQR2. Resolution is 10 bits (f = 7.8 kHz) by default. External Filter is required to get the DC
		The voltage can be set from 0 to 5 volts.
		'''
		return self.set_pwm(1, volt * 20.0, 10)/20   #5V correspods to 100%

	def set_osc(self, chan, freq):        # Freq in Hertz, osc 1 or 2
		'''
		Sets the output frequency of the SQR1 (chan=8) or SQR2 (chan = 9). The function returns actual freqency set.
		'''
		if chan != 8 and chan != 9:
			self.msg = _('Invalid channel number')
			print _('Invalid Channel')
			return 
		OCRS = 0
		TCKPS = 0
		if freq < 0:				        # Disable Timer and Set Output LOW
			TCKPS = 254
		elif freq == 0:
			TCKPS = 255
		else:
			T = 0.125e-6					# Fosc = 16MHz
			mtvals = [T, T*8, T*64, T*256]	# Possible Timer period values
			per = 1.0/freq					# T requested
			for k in range(4):				# Find the optimum scaling, OCR value
				if per < mtvals[k]*50000:
					TCKPS = k
					OCRS = per/mtvals[k]
					OCRS = int(OCRS+0.5)
					freq = 1./(mtvals[k]*OCRS)
					#print freq,'--', k, OCRS, 1./(mtvals[k]*OCRS), TCKPS
					break
		if TCKPS < 4 and OCRS == 0:
			print _('Invalid Freqency')
			return 
		if chan == 8:
			self.sendByte(SETSQR1)
		elif chan == 9:
			self.sendByte(SETSQR2)
		self.sendByte(TCKPS)				# prescaling for timer
		self.sendInt(OCRS)					# OCRS value
		res = self.fd.read(1)
		if res != 'D':
			print _('SETSQR error '), res
			return 'Error: '+res
		return freq

	def set_sqr1(self, freq):
		'''
		Sets the frequency of SQR1 (between .7Hz and 200kHz). All intermediate values are not possible.
		Returns the actual value set.
		'''
		return self.set_osc(8, freq)

	def set_sqr2(self, freq):
		'''
		Sets the frequency of SQR2 (between .7Hz and 200kHz). All intermediate values are not possible.
		Returns the actual value set.
		'''
		return self.set_osc(9, freq)

	def set_sqrs(self, freq, diff=0):        # Freq in Hertz, phase difference in % of T
		'''
		Sets the output frequency of both SQR1 & SQR2. The function returns actual value set. The second argument is the
		phase difference between them  in percentage.
		'''
		if freq == 0:		# Disable both Square waves
			self.set_sqr1(0)
			self.set_sqr2(0)
			return 0
		elif freq < 0:		# Disable both Square waves
			self.set_sqr1(-1)
			self.set_sqr2(-1)
			return 0
		if diff < 0 or diff >= 100.0:
			self.msg = _('Invalid phase difference')
			print _('Invalid phase difference')
			return
		OCRS = 0
		TCKPS = 0
		T = 0.125e-6					# Fosc = 16MHz
		mtvals = [T, T*8, T*64, T*256]	# Possible Timer period values
		per = 1.0/freq					# T requested
		for k in range(4):				# Find the optimum scaling, OCR value
			if per < mtvals[k]*50000:
				TCKPS = k
				OCRS = per/mtvals[k]
				OCRS = int(OCRS+0.5)
				freq = 1./(mtvals[k]*OCRS)
				#print freq,'--', k, OCRS, 1./(mtvals[k]*OCRS)
				break
		if TCKPS < 4 and OCRS == 0:
			self.msg = _('Invalid Freqency')
			print _('Invalid Freqency')
			return 
		TG = int(diff*OCRS/100 +0.5)
		if TG == 0: TG = 1		# Need to examine this
		#print 'TCKPS ', TCKPS, 'ocrs ', OCRS, TG

		self.sendByte(SETSQRS)
		self.sendByte(TCKPS)				# prescaling for timer
		self.sendInt(OCRS)					# OCRS value
		self.sendInt(TG)					# time difference
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('SETSQRS error ')
			print _('SETSQRS error '), res
			return 
		return freq

#--------------------------------- ADC & DAC ----------------------------------------------

	def write_dac(self, iv):
		'''
		Writes the 12 bit I2C DAC to the desired value.
		'''
		if iv < 0: iv = 0			# Force within limits
		if iv > 4095: iv = 4095

		self.sendByte(SETDAC)
		self.sendInt(iv)
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('SETDAC error ')
			print _('SETDAC error '), res
			return

	def read_adc(self, ch):   # Sleep mode conversion
		'''
		Reads the specified ADC channel, returns a number from 0 to 4095. Low level routine.
		'''
		if ch < 0 or ch > 31:
			print _('Argument error')
			return
		self.sendByte(READADCSM)
		self.sendByte(ch)
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('READADC error ')
			print _('READADC error '), res
			return 
		res = self.fd.read(2)
		iv = ord(res[0]) | (ord(res[1]) << 8)
		return iv

	def set_voltage(self, v):
		'''
		Sets the PVS output. range is from -5 to + 5 volts. Reads the actual value to apply correction. 
		Returns the voltage readback of the voltage at PVS.
		'''
		if v < 0 or v > 5.0:
			self.msg = _('invalid voltage')
			print _('invalid voltage')
			return
		goal = int(v * self.DACM + 0.5)
		iv = goal
		for k in range(10):
			self.write_dac(iv)
			isv = self.read_adc(12)			# actual value
			err = goal - isv
			#print 'iv & isv err', iv, isv, err	, k
			if abs(err) <= 1: break
			iv = iv + err/2				# Even if it exceeds 4095, write_dac() will fix it
		sv = self.get_voltage(12)		# The voltage actually set
		return sv

	def set_adcref(self, option):  # 0 => Vdd, else external +Vref option
		'''
		Sets the ADC reference option. Vdd ot external +Vref
		'''
		self.sendByte(SETADCREF)
		self.sendByte(option)
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('SETADCREF error ')
			print _('SETADCREF error '), res
			return 
		return option

	def read_adcNS(self, ch):   # No Sleep mode conversion
		'''
		Reads the specified ADC channel, returns a number from 0 to 4095. Low level routine.
		'''
		if ch < 0 or ch > 31:
			self.msg = _('READADC: Argument error')
			print _('Argument error')
			return
		self.sendByte(READADC)
		self.sendByte(ch)
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('READADC error')
			print _('READADC error'), res
			return 
		res = self.fd.read(2)
		iv = ord(res[0]) | (ord(res[1]) << 8)
		return iv

	def get_voltage(self, ch):  # Sleep mode
		'''
		Reads the specified channel of the ADC. Returns -5V to 5V for channels 0 and 1
		0V to 5V for other channels.
		'''
		if (ch > 31):
			self.msg = _('get_voltage: Argument error')
			print _('Argument error')
			return
		iv = self.read_adc(ch)
		#print 'get_v: iv = ', iv
		v = self.m12[ch] * iv + self.c[ch]
		return v

	def get_voltageNS(self, ch):   # No Sleep Mode
		'''
		Reads the specified channel of the ADC. Returns -5V to 5V for channels 0 and 1
		0V to 5V for other channels.
		'''
		if (ch > 31):
			self.msg = _('get_voltageNS: Argument error')
			print _('Argument error')
			return
		iv = self.read_adcNS(ch)
		#print 'get_v: iv = ', iv
		v = self.m12[ch] * iv + self.c[ch]
		return v

	def get_voltage_within(self, ch, vmax):		# Channel and the expected maximum value, < 5V
		'''
		Sets the DAC to vmax and uses it as external +Vref, to increase resolution
		'''
		if ch > 31 or vmax > 5.0:
			self.msg = _('Argument error')
			print _('Argument error')
			return
		VM = self.set_voltage(vmax)
		self.set_adcref(1)			# External +Vref, from DAC
		res = self.get_voltage(ch)
		self.set_adcref(0)			# Back to Vref+ = Vdd
		return res * VM/5.0

	def get_voltage_time(self, ch):
		'''
		Reads the specified channel of the ADC. Returns -5V to 5V for channels 0 and 1
		0V to 5V for other channels. Adds the PC time info
		'''
		if (ch > 31):
			self.msg = _('get_voltage_time: Argument error')
			print _('Argument error')
			return
		return (time.time(), self.get_voltage(ch))

	def get_voltageNS_time(self, ch):  # No Sleep mode conversion
		'''
		Reads the specified channel of the ADC. Returns -5V to 5V for channels 0 and 1
		0V to 5V for other channels. Adds the PC time info
		'''
		if (ch > 31):
			self.msg = _('Argument error')
			print _('Argument error')
			return 'Error '
		return (time.time(), self.get_voltageNS(ch))


	def capture(self, ch, ns, tg):		# datasize is 1 byte
		'''
		Arguments : channel number , number of samples and timegap between consecutive
		digitizations. Returns two lists of size 'ns': time and volatge.
		Each item is 1 bytes size, truncated ADC data.
		'''
		if tg < 4:		# Minimum time required
			self.msg = _('Minimum Timegap is 4 us')
			return
		self.sendByte(CAPTURE)
		self.sendByte(ch)
		self.sendInt(ns)
		self.sendInt(tg)
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('CAPTURE error')
			print _('CAPTURE error '), res
			return
		res = self.fd.read(1)		# adc_size info from other end, ignored
		data = self.fd.read(ns)
		dl = len(data)
		if dl != ns:
			self.msg = _('CAPTURE: size mismatch %d %d') %(ns,dl)
			print _('CAPTURE: size mismatch '), ns, dl
			return 
		
		ta = []
		va = []
		raw = struct.unpack('B'* ns, data)  # 1 byte words in the structure
		for i in range(ns):
			ta.append(0.001 * i * tg)		# microseconds to milliseconds
			va.append(raw[i] * self.m8[ch] + self.c[ch])
		return ta,va


	def capture_hr(self, ch, ns, tg):		# datasize is 2 byte
		'''
		Arguments : channel number , number of samples and timegap between consecutive
		digitizations. Returns two lists of size 'ns': time and volatge.
		Each item is 2 bytes size, holding 12 bit ADC data.
		'''
		if tg < 4:
			self.msg = _('Minimum Timegap is 4 us')
			return
		self.sendByte(CAPTURE_HR)
		self.sendByte(ch)
		self.sendInt(ns)
		self.sendInt(tg)
		res = self.fd.read(1)
		if res != 'D':
			self.msg =  _('CAPTURE error ')
			print _('CAPTURE error '), res
			return
		res = self.fd.read(1)		# adc_size info from other end, ignored
		data = self.fd.read(ns*2)
		dl = len(data)
		if dl != ns*2:
			self.msg = _('CAPTURE: size mismatch %d %d') %(ns, dl)
			print _('CAPTURE: size mismatch '), ns, dl
			return
		
		ta = []
		va = []
		raw = struct.unpack('H'* ns, data)  # 1 byte words in the structure
		for i in range(ns):
			ta.append(0.001 * i * tg)		# microseconds to milliseconds
			va.append(raw[i] * self.m12[ch] + self.c[ch])
		return ta,va


	def capture2(self, cha, chb, ns, tg):		# 2 channels, datasize is 1 byte
		'''
		Arguments : 2 channel numbers , number of samples and timegap between consecutive
		digitizations. Returns two lists of size 'ns': time and volatge.
		returns 4 lists. Time & voltages, 1 byte ADC data
		'''
		if tg < 8:
			self.msg = _('Minimum Timegap is (4*number of channels)usec')
			return
		self.sendByte(CAPTURE2)
		self.sendByte(cha)
		self.sendByte(chb)
		self.sendInt(ns)
		self.sendInt(tg)
		res = self.fd.read(1)
		if res != 'D':
			self.msg =_('CAPTURE2 error ')
			print _('CAPTURE2 error '), res
			return
		res = self.fd.read(1)		# adc_size info from other end, ignored
		data = self.fd.read(ns*2)
		dl = len(data)
		if dl != ns*2:
			self.msg = _('CAPTURE2: size mismatch')
			print _('CAPTURE2: size mismatch'), ns*2, dl
			return
		taa = []	# time & voltage arrays for CH0
		vaa = []	
		tba = []	# time & voltage arrays for CH1
		vba = []	
		raw = struct.unpack('B'* 2*ns, data)  # 8 bit data in byte array
		for i in range(ns):
			taa.append(0.001 * i * tg)
			vaa.append(raw[2*i] * self.m8[cha] + self.c[cha])
			tba.append(0.001 * i * tg + self.tgap)
			vba.append(raw[2*i +1] * self.m8[chb] + self.c[chb])
		return taa,vaa,tba,vba

	def capture2_hr(self, cha, chb, ns, tg):		# 2 channels, datasize is 2 byte
		'''
		Arguments : 2 channel numbers , number of samples and timegap between consecutive
		digitizations. Returns 4 lists of size 'ns': times and volatges.
		Each item is 2 bytes size, holding 12 bit ADC data.
		'''
		if tg < 8:
			self.msg = _('Minimum Timegap is (4*number of channels)usec')
			return
		self.sendByte(CAPTURE2_HR)
		self.sendByte(cha)
		self.sendByte(chb)
		self.sendInt(ns)
		self.sendInt(tg)
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('CAPTURE2_HR error ')
			print _('CAPTURE2_HR error '), res
			return
		res = self.fd.read(1)		# adc_size info from other end, ignored
		data = self.fd.read(ns*2*2)
		dl = len(data)
		if dl != ns*2*2:
			self.msg = _('CAPTURE2_HR: size mismatch')
			print _('CAPTURE2_HR: size mismatch'), ns*2*2, dl
			return
		taa = []	# time & voltage arrays for CH0
		vaa = []	
		tba = []	# time & voltage arrays for CH1
		vba = []	
		raw = struct.unpack('H'* 2*ns, data)  # 16 bit data in byte array
		for i in range(ns):
			taa.append(0.001 * i * tg)
			vaa.append(raw[2*i] * self.m12[cha] + self.c[cha])
			tba.append(0.001 * i * tg + self.tgap)
			vba.append(raw[2*i +1] * self.m12[chb] + self.c[chb])
		return taa,vaa,tba,vba

	def capture3(self, ch1, ch2, ch3, ns, tg):		# 3 channels, datasize is 2 byte
		'''
		Arguments : 3 channel numbers , number of samples and timegap between consecutive
		digitizations. Returns two lists of size 'ns': time and volatge.
		'''
		if tg < 12:
			self.msg = _('Minimum Timegap is (4*number of channels)usec')
			return
		ch12 = (ch2 << 4) | ch1		# first two channels packed in 1 byte
		self.sendByte(CAPTURE3)
		self.sendByte(ch12)
		self.sendByte(ch3)
		self.sendInt(ns)
		self.sendInt(tg)
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('CAPTURE3 error ')
			print _('CAPTURE3 error '), res
			return
		res = self.fd.read(1)		# adc_size info from other end, ignored
		data = self.fd.read(ns*3)
		dl = len(data)
		if dl != ns*3:
			self.msg = _('CAPTURE3: size mismatch ')
			print _('CAPTURE3: size mismatch '), ns*3, dl
			return
		taa = []	# time & voltage arrays for CH0
		vaa = []	
		tba = []	# time & voltage arrays for CH1
		vba = []	
		tca = []	# time & voltage arrays for CH2
		vca = []	
		raw = struct.unpack('B'* 3*ns, data)  # 8 bit data in byte array
		#print raw
		for i in range(ns):
			taa.append(0.001 * i * tg)
			vaa.append(raw[3*i] * self.m8[ch1] + self.c[ch1])
			tba.append(0.001 * i * tg + self.tgap)
			vba.append(raw[3*i +1] * self.m8[ch2] + self.c[ch2])
			tca.append(0.001 * i * tg + 2*self.tgap)
			vca.append(raw[3*i +2] * self.m8[ch3] + self.c[ch3])
		return taa,vaa, tba,vba, tca,vca


	def capture4(self, ch1, ch2, ch3, ch4, ns, tg):		# 4 channels, datasize is 1 byte
		'''
		Arguments : 4 channel numbers , number of samples and timegap between consecutive
		digitizations. Returns two lists of size 'ns': time and volatge.
		'''
		if tg < 16:
			self.msg = _('Minimum Timegap is (4*number of channels)usec')
			return
		ch12 = (ch2 << 4) | ch1		# first two channels packed in 1 byte
		ch34 = (ch4 << 4) | ch3		# other two channels packed in 1 byte
		self.sendByte(CAPTURE4)
		self.sendByte(ch12)
		self.sendByte(ch34)
		self.sendInt(ns)
		self.sendInt(tg)
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('CAPTURE4 error =')
			print _('CAPTURE4 error ='), ord(res)
			return
		res = self.fd.read(1)		# adc_size info from other end, ignored
		data = self.fd.read(ns*4)
		dl = len(data)
		if dl != ns*4:
			self.msg = _('CAPTURE4: size mismatch ')
			print _('CAPTURE4: size mismatch '), ns*4, dl
			return
		taa = []	# time & voltage arrays for CH0
		vaa = []	
		tba = []	# time & voltage arrays for CH1
		vba = []	
		tca = []	# time & voltage arrays for CH3
		vca = []	
		tda = []	# time & voltage arrays for CH4
		vda = []	
		raw = struct.unpack('B'* 4*ns, data)  # 8 bit data in byte array
		#print raw
		for i in range(ns):
			taa.append(0.001 * i * tg)
			vaa.append(raw[4*i] * self.m8[ch1] + self.c[ch1])
			tba.append(0.001 * i * tg + self.tgap)
			vba.append(raw[4*i +1] * self.m8[ch2] + self.c[ch2])
			tca.append(0.001 * i * tg + 2*self.tgap)
			vca.append(raw[4*i +2] * self.m8[ch3] + self.c[ch3])
			tda.append(0.001 * i * tg + 3*self.tgap)
			vda.append(raw[4*i +3] * self.m8[ch4] + self.c[ch4])
		return taa,vaa, tba,vba, tca,vca, tda, vda

	def capture01(self, np, tg):
		'''
		captures channels A0 and A1 simultaneously, with 8 bit resolution
		'''
		return self.capture2(1,2,np,tg)

	def capture01_hr(self, np, tg):
		'''
		captures channels A0 and A1 simultaneously, with 12 bit resolution
		'''
		return self.capture2_hr(1,2,np,tg)

	def set_trigger(self, tval):
		self.sendByte(SETTRIGVAL)
		self.sendInt(tval)
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('SETTRIGVAL error ')
			print _('SETTRIGVAL error '), res
			return
		return tval

#------------------- Modifiers for Capture ------------------------------
	def disable_actions(self):
		'''
		Disable all modifiers to the capture call. The capture calls will be set to 
		do analog triggering on the first channel captured.
		'''
		self.sendByte(SETACTION)
		self.sendByte(AANATRIG)
		self.sendByte(0)		# Self trigger on channel zero means the first channel captured
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('ERROR: SETACTION')
			print _('ERROR: SETACTION'), res
			return
		return 0

	def enable_action(self, action, ch):
		if  action < 0 or action > 8 or ch < 1  or ch > 11:	
			self.msg = 'Invalid actions or source specified'
			return
		self.sendByte(SETACTION)
		self.sendByte(action)
		self.sendByte(ch)
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('SETACTION ERR')
			print _('SETACTION ERR: action = %d ch = %d') %(action,ch), res
			return
		return action
		
	def set_trig_source(self, ch):
		'''
		Analog Trigger of the desired channel
		'''
		return self.enable_action(AANATRIG, ch)
		
	def enable_wait_high(self, ch):
		'''
		Wait for a HIGH on the specified 'pin' just before every Capture.
		'''      
		return self.enable_action(AWAITHI, ch)

	def enable_wait_low(self, ch):
		'''
		Wait for a LOW on the specified 'pin' just before every Capture.
		'''
		return self.enable_action(AWAITLO, ch)

	def enable_wait_rising(self, ch):
		'''
		Wait for a rising EDGE on the specified 'pin' just before every Capture.
		'''
		return self.enable_action(AWAITRISE, ch)

	def enable_wait_falling(self, ch):
		'''
		Wait for a falling EDGE on the specified 'pin' just before every Capture.
		'''
		return self.enable_action(AWAITFALL, ch)

	def enable_set_high(self, ch):
		'''
		Sets the specified 'pin' HIGH, just before every Capture.
		'''
		return self.enable_action(ASET, ch)

	def enable_set_low(self, ch):
		'''
		Sets the specified 'pin' LOW, just before every Capture.
		'''
		return self.enable_action(ACLR, ch)

	def enable_pulse_high(self, ch):
		'''
		Generate a HIGH TRUE Pulse on the specified 'pin', just before every Capture.
		width is specified by the set_pulsewidth() function.
		'''
		return self.enable_action(APULSEHT, ch)

	def enable_pulse_low(self, ch):
		'''
		Generate a LOW TRUE Pulse on the specified 'pin', just before every Capture.
		'''
		return self.enable_action(APULSELT, ch)

	def set_pulsewidth(self, width):
		'''
		Sets the 'pulse_width' parameter for pulse2rtime() command. 
		Also used by usound_time() and the elable_pulse_high/low() functions
		'''
		if width < 1 or width > 500:
			self.msg = _('Invalid pulse width')
			return
		self.sendByte(SETPULWIDTH)
		self.sendInt(width)
		res = self.fd.read(1)
		if res != 'D':
			self.msg = _('ERROR: SETPULWIDTH')
			print _('ERROR: SETPULWIDTH'), res
			return
		return width

#-----------DIRECT PORT ACCESS FUNCTIONS (Use only if you know what you are doing)---------
	def set_ddr(self, port, direc):
		self.dwrite(chr(SETDDR))           
		self.dwrite(chr(port))	 # 0 to 3 for A,B,C and D
		self.dwrite(chr(direc))
		self.fd.read(1)
		return

	def set_port(self, port, val):
		self.dwrite(chr(SETPORT))           
		self.dwrite(chr(port))	 # 0 to 3 for A,B,C and D
		self.dwrite(chr(val))
		self.fd.read(1)
		return

	def get_port(self, port):
		self.dwrite(chr(SETPORT))           
		self.dwrite(chr(port))	 # 0 to 3 for A,B,C and D
		self.fd.read(1)
		data = self.fd.read(1)     	 # get the status byte only
		return ord(data)

#--------------------------------- may go to eyeutils.py ------------------------------
	def minimum(self,va):
		vmin = 1.0e10		# need to change
		for v in va:
			if v < vmin:
				vmin = v
		return vmin

	def maximum(self,va):
		vmax = 1.0e-10		# need to change
		for v in va:
			if v > vmax:
				vmax = v
		return vmax

	def rms(self,va):
		vsum = 0.0
		for v in va:
			vsum += v**2
		v = vsum / len(va)
		return math.sqrt(v)

	def mean(self,va):
		vsum = 0.0
		for v in va:
			vsum += v
		v = vsum / len(va)
		return v

	def save(self, data, filename = 'plot.dat'):
		'''
		Input data is of the form, [ [x1,y1], [x2,y2],....] where x and y are vectors
		'''
		if data == None: return
		import __builtin__					# Need to do this since 'eyes.py' redefines 'open'
		f = __builtin__.open(filename,'w')
		for xy in data:
			for k in range(len(xy[0])):
				f.write('%5.3f  %5.3f\n'%(xy[0][k], xy[1][k]))
			f.write('\n')
		f.close()

	def grace(self, data, xlab = '', ylab = '', title = ''):
		'''
		Input data is of the form, [ [x1,y1], [x2,y2],....] where x and y are vectors
		'''
		try:
			import pygrace
			pg = pygrace.grace()
			for xy in data:
				pg.plot(xy[0],xy[1])
				pg.hold(1)				# Do not erase the old data
			pg.xlabel(xlab)
			pg.ylabel(ylab)
			pg.title(title)
			return True
		except:
			return False