/usr/share/pyshared/dipy/sims/voxel.py is in python-dipy 0.7.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 | from __future__ import division
import numpy as np
from numpy import dot
from dipy.core.geometry import sphere2cart
from dipy.core.geometry import vec2vec_rotmat
# Diffusion coefficients for white matter tracts, in mm^2/s
#
# Based roughly on values from:
#
# Pierpaoli, Basser, "Towards a Quantitative Assessment of Diffusion
# Anisotropy", Magnetic Resonance in Medicine, 1996; 36(6):893-906.
#
diffusion_evals = np.array([1500e-6, 400e-6, 400e-6])
def _add_gaussian(sig, noise1, noise2):
"""
Helper function to add_noise
This one simply adds one of the Gaussians to the sig and ignores the other
one.
"""
return sig + noise1
def _add_rician(sig, noise1, noise2):
"""
Helper function to add_noise.
This does the same as abs(sig + complex(noise1, noise2))
"""
return np.sqrt((sig + noise1) ** 2 + noise2 ** 2)
def _add_rayleigh(sig, noise1, noise2):
"""
Helper function to add_noise
The Rayleigh distribution is $\sqrt\{Gauss_1^2 + Gauss_2^2}$.
"""
return sig + np.sqrt(noise1 ** 2 + noise2 ** 2)
def add_noise(signal, snr, S0, noise_type='rician'):
r""" Add noise of specified distribution to the signal from a single voxel.
Parameters
-----------
signal : 1-d ndarray
The signal in the voxel.
snr : float
The desired signal-to-noise ratio. (See notes below.)
If `snr` is None, return the signal as-is.
S0 : float
Reference signal for specifying `snr`.
noise_type : string, optional
The distribution of noise added. Can be either 'gaussian' for Gaussian
distributed noise, 'rician' for Rice-distributed noise (default) or
'rayleigh' for a Rayleigh distribution.
Returns
--------
signal : array, same shape as the input
Signal with added noise.
Notes
-----
SNR is defined here, following [1]_, as ``S0 / sigma``, where ``sigma`` is
the standard deviation of the two Gaussian distributions forming the real
and imaginary components of the Rician noise distribution (see [2]_).
References
----------
.. [1] Descoteaux, Angelino, Fitzgibbons and Deriche (2007) Regularized,
fast and robust q-ball imaging. MRM, 58: 497-510
.. [2] Gudbjartson and Patz (2008). The Rician distribution of noisy MRI
data. MRM 34: 910-914.
Examples
--------
>>> signal = np.arange(800).reshape(2, 2, 2, 100)
>>> signal_w_noise = add_noise(signal, 10., 100., noise_type='rician')
"""
if snr is None:
return signal
sigma = S0 / snr
noise_adder = {'gaussian': _add_gaussian,
'rician': _add_rician,
'rayleigh': _add_rayleigh}
noise1 = np.random.normal(0, sigma, size=signal.shape)
if noise_type == 'gaussian':
noise2 = None
else:
noise2 = np.random.normal(0, sigma, size=signal.shape)
return noise_adder[noise_type](signal, noise1, noise2)
def sticks_and_ball(gtab, d=0.0015, S0=100, angles=[(0, 0), (90, 0)],
fractions=[35, 35], snr=20):
""" Simulate the signal for a Sticks & Ball model.
Parameters
-----------
gtab : GradientTable
Signal measurement directions.
d : float
Diffusivity value.
S0 : float
Unweighted signal value.
angles : array (K,2) or (K, 3)
List of K polar angles (in degrees) for the sticks or array of K
sticks as unit vectors.
fractions : float
Percentage of each stick. Remainder to 100 specifies isotropic
component.
snr : float
Signal to noise ratio, assuming Rician noise. If set to None, no
noise is added.
Returns
--------
S : (N,) ndarray
Simulated signal.
sticks : (M,3)
Sticks in cartesian coordinates.
References
----------
.. [1] Behrens et al., "Probabilistic diffusion
tractography with multiple fiber orientations: what can we gain?",
Neuroimage, 2007.
"""
fractions = [f / 100. for f in fractions]
f0 = 1 - np.sum(fractions)
S = np.zeros(len(gtab.bvals))
angles = np.array(angles)
if angles.shape[-1] == 3:
sticks = angles
else:
sticks = [sphere2cart(1, np.deg2rad(pair[0]), np.deg2rad(pair[1]))
for pair in angles]
sticks = np.array(sticks)
for (i, g) in enumerate(gtab.bvecs[1:]):
S[i + 1] = f0 * np.exp(-gtab.bvals[i + 1] * d) + \
np.sum([fractions[j] * np.exp(-gtab.bvals[i + 1] * d * np.dot(s, g) ** 2)
for (j, s) in enumerate(sticks)])
S[i + 1] = S0 * S[i + 1]
S[gtab.b0s_mask] = S0
S = add_noise(S, snr, S0)
return S, sticks
def single_tensor(gtab, S0=1, evals=None, evecs=None, snr=None):
""" Simulated Q-space signal with a single tensor.
Parameters
-----------
gtab : GradientTable
Measurement directions.
S0 : double,
Strength of signal in the presence of no diffusion gradient (also
called the ``b=0`` value).
evals : (3,) ndarray
Eigenvalues of the diffusion tensor. By default, values typical for
prolate white matter are used.
evecs : (3, 3) ndarray
Eigenvectors of the tensor. You can also think of this as a rotation
matrix that transforms the direction of the tensor. The eigenvectors
needs to be column wise.
snr : float
Signal to noise ratio, assuming Rician noise. None implies no noise.
Returns
--------
S : (N,) ndarray
Simulated signal: ``S(q, tau) = S_0 e^(-b g^T R D R.T g)``.
References
----------
.. [1] M. Descoteaux, "High Angular Resolution Diffusion MRI: from Local
Estimation to Segmentation and Tractography", PhD thesis,
University of Nice-Sophia Antipolis, p. 42, 2008.
.. [2] E. Stejskal and J. Tanner, "Spin diffusion measurements: spin echos
in the presence of a time-dependent field gradient", Journal of
Chemical Physics, nr. 42, pp. 288--292, 1965.
"""
if evals is None:
evals = diffusion_evals
if evecs is None:
evecs = np.eye(3)
out_shape = gtab.bvecs.shape[:gtab.bvecs.ndim - 1]
gradients = gtab.bvecs.reshape(-1, 3)
R = np.asarray(evecs)
S = np.zeros(len(gradients))
D = dot(dot(R, np.diag(evals)), R.T)
for (i, g) in enumerate(gradients):
S[i] = S0 * np.exp(-gtab.bvals[i] * dot(dot(g.T, D), g))
S = add_noise(S, snr, S0)
return S.reshape(out_shape)
def multi_tensor(gtab, mevals, S0=100, angles=[(0, 0), (90, 0)],
fractions=[50, 50], snr=20):
r"""Simulate a Multi-Tensor signal.
Parameters
-----------
gtab : GradientTable
mevals : array (K, 3)
each tensor's eigenvalues in each row
S0 : float
Unweighted signal value (b0 signal).
angles : array (K,2) or (K,3)
List of K tensor directions in polar angles (in degrees) or unit vectors
fractions : float
Percentage of the contribution of each tensor. The sum of fractions
should be equal to 100%.
snr : float
Signal to noise ratio, assuming Rician noise. If set to None, no
noise is added.
Returns
--------
S : (N,) ndarray
Simulated signal.
sticks : (M,3)
Sticks in cartesian coordinates.
Examples
--------
>>> import numpy as np
>>> from dipy.sims.voxel import multi_tensor
>>> from dipy.data import get_data
>>> from dipy.core.gradients import gradient_table
>>> from dipy.io.gradients import read_bvals_bvecs
>>> fimg, fbvals, fbvecs = get_data('small_101D')
>>> bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs)
>>> gtab = gradient_table(bvals, bvecs)
>>> mevals=np.array(([0.0015, 0.0003, 0.0003],[0.0015, 0.0003, 0.0003]))
>>> e0 = np.array([1, 0, 0.])
>>> e1 = np.array([0., 1, 0])
>>> S = multi_tensor(gtab, mevals)
"""
if np.round(np.sum(fractions), 2) != 100.0:
raise ValueError('Fractions should sum to 100')
fractions = [f / 100. for f in fractions]
S = np.zeros(len(gtab.bvals))
angles = np.array(angles)
if angles.shape[-1] == 3:
sticks = angles
else:
sticks = [sphere2cart(1, np.deg2rad(pair[0]), np.deg2rad(pair[1]))
for pair in angles]
sticks = np.array(sticks)
for i in range(len(fractions)):
S = S + fractions[i] * single_tensor(gtab, S0=S0, evals=mevals[i],
evecs=all_tensor_evecs(
sticks[i]).T,
snr=None)
return add_noise(S, snr, S0), sticks
def single_tensor_odf(r, evals=None, evecs=None):
"""Simulated ODF with a single tensor.
Parameters
----------
r : (N,3) or (M,N,3) ndarray
Measurement positions in (x, y, z), either as a list or on a grid.
evals : (3,)
Eigenvalues of diffusion tensor. By default, use values typical for
prolate white matter.
evecs : (3, 3) ndarray
Eigenvectors of the tensor. You can also think of these as the
rotation matrix that determines the orientation of the diffusion
tensor.
Returns
-------
ODF : (N,) ndarray
The diffusion probability at ``r`` after time ``tau``.
References
----------
.. [1] Aganj et al., "Reconstruction of the Orientation Distribution
Function in Single- and Multiple-Shell q-Ball Imaging Within
Constant Solid Angle", Magnetic Resonance in Medicine, nr. 64,
pp. 554--566, 2010.
"""
if evals is None:
evals = diffusion_evals
if evecs is None:
evecs = np.eye(3)
out_shape = r.shape[:r.ndim - 1]
R = np.asarray(evecs)
D = dot(dot(R, np.diag(evals)), R.T)
Di = np.linalg.inv(D)
r = r.reshape(-1, 3)
P = np.zeros(len(r))
for (i, u) in enumerate(r):
P[i] = (dot(dot(u.T, Di), u)) ** (3 / 2)
return (1 / (4 * np.pi * np.prod(evals) ** (1 / 2) * P)).reshape(out_shape)
def all_tensor_evecs(e0):
"""Given the principle tensor axis, return the array of all
eigenvectors (or, the rotation matrix that orientates the tensor).
Parameters
----------
e0 : (3,) ndarray
Principle tensor axis.
Returns
-------
evecs : (3,3) ndarray
Tensor eigenvectors.
"""
axes = np.eye(3)
mat = vec2vec_rotmat(axes[2], e0)
e1 = np.dot(mat, axes[0])
e2 = np.dot(mat, axes[1])
return np.array([e0, e1, e2])
def multi_tensor_odf(odf_verts, mevals, angles, fractions):
r'''Simulate a Multi-Tensor ODF.
Parameters
----------
odf_verts : (N,3) ndarray
Vertices of the reconstruction sphere.
mevals : sequence of 1D arrays,
Eigen-values for each tensor.
angles : sequence of 2d tuples,
Sequence of principal directions for each tensor in polar angles
or cartesian unit coordinates.
fractions : sequence of floats,
Percentages of the fractions for each tensor.
Returns
-------
ODF : (N,) ndarray
Orientation distribution function.
Examples
--------
Simulate a MultiTensor ODF with two peaks and calculate its exact ODF.
>>> import numpy as np
>>> from dipy.sims.voxel import multi_tensor_odf, all_tensor_evecs
>>> from dipy.data import get_sphere
>>> sphere = get_sphere('symmetric724')
>>> vertices, faces = sphere.vertices, sphere.faces
>>> mevals = np.array(([0.0015, 0.0003, 0.0003],[0.0015, 0.0003, 0.0003]))
>>> angles = [(0, 0), (90, 0)]
>>> odf = multi_tensor_odf(vertices, mevals, angles, [50, 50])
'''
mf = [f / 100. for f in fractions]
angles = np.array(angles)
if angles.shape[-1] == 3:
sticks = angles
else:
sticks = [sphere2cart(1, np.deg2rad(pair[0]), np.deg2rad(pair[1]))
for pair in angles]
sticks = np.array(sticks)
odf = np.zeros(len(odf_verts))
mevecs = []
for s in sticks:
mevecs += [all_tensor_evecs(s).T]
for (j, f) in enumerate(mf):
odf += f * single_tensor_odf(odf_verts,
evals=mevals[j], evecs=mevecs[j])
return odf
def single_tensor_rtop(evals=None, tau=1.0 / (4 * np.pi ** 2)):
r'''Simulate a Multi-Tensor rtop.
Parameters
----------
evals : 1D arrays,
Eigen-values for the tensor. By default, values typical for prolate
white matter are used.
tau : float,
diffusion time. By default the value that makes q=sqrt(b).
Returns
-------
rtop : float,
Return to origin probability.
References
----------
.. [1] Cheng J., "Estimation and Processing of Ensemble Average Propagator and
Its Features in Diffusion MRI", PhD Thesis, 2012.
'''
if evals is None:
evals = diffusion_evals
rtop = 1.0 / np.sqrt((4 * np.pi * tau) ** 3 * np.prod(evals))
return rtop
def multi_tensor_rtop(mf, mevals=None, tau=1 / (4 * np.pi ** 2)):
r'''Simulate a Multi-Tensor rtop.
Parameters
----------
mf : sequence of floats, bounded [0,1]
Percentages of the fractions for each tensor.
mevals : sequence of 1D arrays,
Eigen-values for each tensor. By default, values typical for prolate
white matter are used.
tau : float,
diffusion time. By default the value that makes q=sqrt(b).
Returns
-------
rtop : float,
Return to origin probability.
References
----------
.. [1] Cheng J., "Estimation and Processing of Ensemble Average Propagator and
Its Features in Diffusion MRI", PhD Thesis, 2012.
'''
rtop = 0
if mevals is None:
mevals = [None, ] * len(mf)
for j, f in enumerate(mf):
rtop += f * single_tensor_rtop(mevals[j], tau=tau)
return rtop
def single_tensor_pdf(r, evals=None, evecs=None, tau=1 / (4 * np.pi ** 2)):
"""Simulated ODF with a single tensor.
Parameters
----------
r : (N,3) or (M,N,3) ndarray
Measurement positions in (x, y, z), either as a list or on a grid.
evals : (3,)
Eigenvalues of diffusion tensor. By default, use values typical for
prolate white matter.
evecs : (3, 3) ndarray
Eigenvectors of the tensor. You can also think of these as the
rotation matrix that determines the orientation of the diffusion
tensor.
tau : float,
diffusion time. By default the value that makes q=sqrt(b).
Returns
-------
pdf : (N,) ndarray
The diffusion probability at ``r`` after time ``tau``.
References
----------
.. [1] Cheng J., "Estimation and Processing of Ensemble Average Propagator and
Its Features in Diffusion MRI", PhD Thesis, 2012.
"""
if evals is None:
evals = diffusion_evals
if evecs is None:
evecs = np.eye(3)
out_shape = r.shape[:r.ndim - 1]
R = np.asarray(evecs)
D = dot(dot(R, np.diag(evals)), R.T)
Di = np.linalg.inv(D)
r = r.reshape(-1, 3)
P = np.zeros(len(r))
for (i, u) in enumerate(r):
P[i] = (-dot(dot(u.T, Di), u)) / (4 * tau)
pdf = (1 / np.sqrt((4 * np.pi * tau) ** 3 * np.prod(evals))) * np.exp(P)
return pdf.reshape(out_shape)
def multi_tensor_pdf(pdf_points, mevals, angles, fractions,
tau=1 / (4 * np.pi ** 2)):
r'''Simulate a Multi-Tensor ODF.
Parameters
----------
pdf_points : (N, 3) ndarray
Points to evaluate the PDF.
mevals : sequence of 1D arrays,
Eigen-values for each tensor. By default, values typical for prolate
white matter are used.
angles : sequence,
Sequence of principal directions for each tensor in polar angles
or cartesian unit coordinates.
fractions : sequence of floats,
Percentages of the fractions for each tensor.
tau : float,
diffusion time. By default the value that makes q=sqrt(b).
Returns
-------
pdf : (N,) ndarray,
Probability density function of the water displacement.
References
----------
.. [1] Cheng J., "Estimation and Processing of Ensemble Average Propagator
and its Features in Diffusion MRI", PhD Thesis, 2012.
'''
mf = [f / 100. for f in fractions]
angles = np.array(angles)
if angles.shape[-1] == 3:
sticks = angles
else:
sticks = [sphere2cart(1, np.deg2rad(pair[0]), np.deg2rad(pair[1]))
for pair in angles]
sticks = np.array(sticks)
pdf = np.zeros(len(pdf_points))
mevecs = []
for s in sticks:
mevecs += [all_tensor_evecs(s).T]
for j, f in enumerate(mf):
pdf += f * single_tensor_pdf(pdf_points,
evals=mevals[j], evecs=mevecs[j], tau=tau)
return pdf
def single_tensor_msd(evals=None, tau=1 / (4 * np.pi ** 2)):
r'''Simulate a Multi-Tensor rtop.
Parameters
----------
evals : 1D arrays,
Eigen-values for the tensor. By default, values typical for prolate
white matter are used.
tau : float,
diffusion time. By default the value that makes q=sqrt(b).
Returns
-------
msd : float,
Mean square displacement.
References
----------
.. [1] Cheng J., "Estimation and Processing of Ensemble Average Propagator and
Its Features in Diffusion MRI", PhD Thesis, 2012.
'''
if evals is None:
evals = diffusion_evals
msd = 2 * tau * np.sum(evals)
return msd
def multi_tensor_msd(mf, mevals=None, tau=1 / (4 * np.pi ** 2)):
r'''Simulate a Multi-Tensor rtop.
Parameters
----------
mf : sequence of floats, bounded [0,1]
Percentages of the fractions for each tensor.
mevals : sequence of 1D arrays,
Eigen-values for each tensor. By default, values typical for prolate
white matter are used.
tau : float,
diffusion time. By default the value that makes q=sqrt(b).
Returns
-------
msd : float,
Mean square displacement.
References
----------
.. [1] Cheng J., "Estimation and Processing of Ensemble Average Propagator and
Its Features in Diffusion MRI", PhD Thesis, 2012.
'''
msd = 0
if mevals is None:
mevals = [None, ] * len(mf)
for j, f in enumerate(mf):
msd += f * single_tensor_msd(mevals[j], tau=tau)
return msd
# Use standard naming convention, but keep old names
# for backward compatibility
SticksAndBall = sticks_and_ball
SingleTensor = single_tensor
MultiTensor = multi_tensor
|