/usr/share/pyshared/dipy/segment/mask.py is in python-dipy 0.7.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 | from __future__ import division, print_function, absolute_import
from warnings import warn
import numpy as np
from dipy.reconst.dti import fractional_anisotropy, color_fa
from scipy.ndimage.filters import median_filter
try:
from skimage.filter import threshold_otsu as otsu
except:
from .threshold import otsu
from scipy.ndimage import binary_dilation, generate_binary_structure
def multi_median(input, median_radius, numpass):
""" Applies median filter multiple times on input data.
Parameters
----------
input : ndarray
The input volume to apply filter on.
median_radius : int
Radius (in voxels) of the applied median filter
numpass: int
Number of pass of the median filter
Returns
-------
input : ndarray
Filtered input volume.
"""
outvol = np.zeros_like(input)
# Array representing the size of the median window in each dimension.
medarr = np.ones_like(input.shape) * ((median_radius * 2) + 1)
# Multi pass
for i in range(0, numpass):
median_filter(input, medarr, output=input)
return input
def applymask(vol, mask):
""" Mask vol with mask.
Parameters
----------
vol : ndarray
Array with $V$ dimensions
mask : ndarray
Binary mask. Has $M$ dimensions where $M <= V$. When $M < V$, we append
$V - M$ dimensions with axis length 1 to `mask` so that `mask` will
broadcast against `vol`. In the typical case `vol` can be 4D, `mask`
can be 3D, and we append a 1 to the mask shape which (via numpy
broadcasting) has the effect of appling the 3D mask to each 3D slice in
`vol` (``vol[..., 0]`` to ``vol[..., -1``).
Returns
-------
masked_vol : ndarray
`vol` multiplied by `mask` where `mask` may have been extended to match
extra dimensions in `vol`
"""
mask = mask.reshape(mask.shape + (vol.ndim - mask.ndim) * (1,))
return vol * mask
def bounding_box(vol):
""" Compute the bounding box of nonzero intensity voxels in the volume.
Parameters
----------
vol : ndarray
Volume to compute bounding box on.
Returns
-------
npmins : list
Array containg minimum index of each dimension
npmaxs : list
Array containg maximum index of each dimension
"""
# Find bounds on first dimension
temp = vol
for i in range(vol.ndim - 1):
temp = temp.any(-1)
mins = [temp.argmax()]
maxs = [len(temp) - temp[::-1].argmax()]
# Check that vol is not all 0
if mins[0] == 0 and temp[0] == 0:
warn('No data found in volume to bound. Returning empty bounding box.')
return [0] * vol.ndim, [0] * vol.ndim
# Find bounds on remaining dimensions
if vol.ndim > 1:
a, b = bounding_box(vol.any(0))
mins.extend(a)
maxs.extend(b)
return mins, maxs
def crop(vol, mins, maxs):
""" Crops the input volume.
Parameters
----------
vol : ndarray
Volume to crop.
mins : array
Array containg minimum index of each dimension.
maxs : array
Array containg maximum index of each dimension.
Returns
-------
vol : ndarray
The cropped volume.
"""
return vol[tuple(slice(i, j) for i, j in zip(mins, maxs))]
def median_otsu(input_volume, median_radius=4, numpass=4,
autocrop=False, vol_idx=None, dilate=None):
""" Simple brain extraction tool method for images from DWI data
It uses a median filter smoothing of the input_volumes `vol_idx` and an
automatic histogram Otsu thresholding technique, hence the name
*median_otsu*.
This function is inspired from Mrtrix's bet which has default values
``median_radius=3``, ``numpass=2``. However, from tests on multiple 1.5T
and 3T data from GE, Philips, Siemens, the most robust choice is
``median_radius=4``, ``numpass=4``.
Parameters
----------
input_volume : ndarray
ndarray of the brain volume
median_radius : int
Radius (in voxels) of the applied median filter(default 4)
numpass: int
Number of pass of the median filter (default 4)
autocrop: bool, optional
if True, the masked input_volume will also be cropped using the bounding
box defined by the masked data. Should be on if DWI is upsampled to 1x1x1
resolution. (default False)
vol_idx : None or array, optional
1D array representing indices of ``axis=3`` of a 4D `input_volume`
None (the default) corresponds to ``(0,)`` (assumes first volume in 4D array)
dilate : None or int, optional
number of iterations for binary dilation
Returns
-------
maskedvolume : ndarray
Masked input_volume
mask : 3D ndarray
The binary brain mask
"""
if len(input_volume.shape) == 4:
if vol_idx is not None:
b0vol = np.mean(input_volume[..., tuple(vol_idx)], axis=3)
else:
b0vol = input_volume[..., 0].copy()
else:
b0vol = input_volume.copy()
# Make a mask using a multiple pass median filter and histogram thresholding.
mask = multi_median(b0vol, median_radius, numpass)
thresh = otsu(mask)
mask = mask > thresh
if dilate is not None:
cross = generate_binary_structure(3, 1)
mask = binary_dilation(mask, cross, iterations=dilate)
# Auto crop the volumes using the mask as input_volume for bounding box computing.
if autocrop:
mins, maxs = bounding_box(mask)
mask = crop(mask, mins, maxs)
croppedvolume = crop(input_volume, mins, maxs)
maskedvolume = applymask(croppedvolume, mask)
else:
maskedvolume = applymask(input_volume, mask)
return maskedvolume, mask
def segment_from_cfa(tensor_fit, roi, threshold, return_cfa=False):
"""
Segment the cfa inside roi using the values from threshold as bounds.
Parameters
-------------
tensor_fit : TensorFit object
TensorFit object
roi : ndarray
A binary mask, which contains the bounding box for the segmentation.
threshold : array-like
An iterable that defines the min and max values to use for the thresholding.
The values are specified as (R_min, R_max, G_min, G_max, B_min, B_max)
return_cfa : bool, optional
If True, the cfa is also returned.
Returns
----------
mask : ndarray
Binary mask of the segmentation.
cfa : ndarray, optional
Array with shape = (..., 3), where ... is the shape of tensor_fit.
The color fractional anisotropy, ordered as a nd array with the last
dimension of size 3 for the R, G and B channels.
"""
FA = fractional_anisotropy(tensor_fit.evals)
FA[np.isnan(FA)] = 0
FA = np.clip(FA, 0, 1) # Clamp the FA to remove degenerate tensors
cfa = color_fa(FA, tensor_fit.evecs)
roi = np.asarray(roi, dtype=bool)
include = (cfa >= threshold[0::2]) & (cfa <= threshold[1::2]) & roi[..., None]
mask = np.all(include, axis=-1)
if return_cfa:
return mask, cfa
return mask
def clean_cc_mask(mask):
"""
Cleans a segmentation of the corpus callosum so no random pixels are included.
Parameters
----------
mask : ndarray
Binary mask of the coarse segmentation.
Returns
-------
new_cc_mask : ndarray
Binary mask of the cleaned segmentation.
"""
from scipy.ndimage.measurements import label
new_cc_mask = np.zeros(mask.shape)
# Flood fill algorithm to find contiguous regions.
labels, numL = label(mask)
volumes = [len(labels[np.where(labels == l_idx+1)]) for l_idx in np.arange(numL)]
biggest_vol = np.arange(numL)[np.where(volumes == np.max(volumes))] + 1
new_cc_mask[np.where(labels == biggest_vol)] = 1
return new_cc_mask
|