/usr/share/pyshared/dipy/reconst/peaks.py is in python-dipy 0.7.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 | from __future__ import division, print_function, absolute_import
from multiprocessing import cpu_count, Pool
from itertools import repeat
from os import path
from warnings import warn
from ..utils.six.moves import xrange
from nibabel.tmpdirs import InTemporaryDirectory
import numpy as np
import scipy.optimize as opt
from .recspeed import local_maxima, remove_similar_vertices, search_descending
from dipy.core.sphere import HemiSphere, Sphere
from dipy.data import get_sphere
from dipy.core.ndindex import ndindex
from dipy.reconst.shm import sh_to_sf_matrix
default_sphere = HemiSphere.from_sphere(get_sphere('symmetric724'))
def peak_directions_nl(sphere_eval, relative_peak_threshold=.25,
min_separation_angle=25, sphere=default_sphere,
xtol=1e-7):
"""Non Linear Direction Finder
Parameters
----------
sphere_eval : callable
A function which can be evaluated on a sphere.
relative_peak_threshold : float
Only return peaks greater than ``relative_peak_threshold * m`` where m
is the largest peak.
min_separation_angle : float in [0, 90]
The minimum distance between directions. If two peaks are too close
only the larger of the two is returned.
sphere : Sphere
A discrete Sphere. The points on the sphere will be used for initial
estimate of maximums.
xtol : float
Relative tolerance for optimization.
Returns
-------
directions : array (N, 3)
Points on the sphere corresponding to N local maxima on the sphere.
values : array (N,)
Value of sphere_eval at each point on directions.
"""
# Find discrete peaks for use as seeds in non-linear search
discrete_values = sphere_eval(sphere)
values, indices = local_maxima(discrete_values, sphere.edges)
seeds = np.column_stack([sphere.theta[indices], sphere.phi[indices]])
# Helper function
def _helper(x):
sphere = Sphere(theta=x[0], phi=x[1])
return -sphere_eval(sphere)
# Non-linear search
num_seeds = len(seeds)
theta = np.empty(num_seeds)
phi = np.empty(num_seeds)
for i in xrange(num_seeds):
peak = opt.fmin(_helper, seeds[i], xtol=xtol, disp=False)
theta[i], phi[i] = peak
# Evaluate on new-found peaks
small_sphere = Sphere(theta=theta, phi=phi)
values = sphere_eval(small_sphere)
# Sort in descending order
order = values.argsort()[::-1]
values = values[order]
directions = small_sphere.vertices[order]
# Remove directions that are too small
n = search_descending(values, relative_peak_threshold)
directions = directions[:n]
# Remove peaks too close to each-other
directions, idx = remove_similar_vertices(directions, min_separation_angle,
return_index=True)
values = values[idx]
return directions, values
def peak_directions(odf, sphere, relative_peak_threshold=.5,
min_separation_angle=25, minmax_norm=True):
"""Get the directions of odf peaks
Peaks are defined as points on the odf that are greater than at least one
neighbor and greater than or equal to all neighbors. Peaks are sorted in
descending order by their values then filtered based on their relative size
and spacing on the sphere. An odf may have 0 peaks, for example if the odf
is perfectly isotropic.
Parameters
----------
odf : 1d ndarray
The odf function evaluated on the vertices of `sphere`
sphere : Sphere
The Sphere providing discrete directions for evaluation.
relative_peak_threshold : float in [0., 1.]
Only peaks greater than ``min + relative_peak_threshold * scale`` are
kept, where ``min = max(0, odf.min())`` and
``scale = odf.max() - min``.
min_separation_angle : float in [0, 90]
The minimum distance between directions. If two peaks are too close
only the larger of the two is returned.
Returns
-------
directions : (N, 3) ndarray
N vertices for sphere, one for each peak
values : (N,) ndarray
peak values
indices : (N,) ndarray
peak indices of the directions on the sphere
Notes
-----
If the odf has any negative values, they will be clipped to zeros.
"""
values, indices = local_maxima(odf, sphere.edges)
# If there is only one peak return
n = len(values)
if n == 0 or (values[0] < 0.):
return np.zeros((0, 3)), np.zeros(0), np.zeros(0, dtype=int)
elif n == 1:
return sphere.vertices[indices], values, indices
odf_min = odf.min()
odf_min = odf_min if (odf_min >= 0.) else 0.
# because of the relative threshold this algorithm will give the same peaks
# as if we divide (values - odf_min) with (odf_max - odf_min) or not so
# here we skip the division to increase speed
values_norm = (values - odf_min)
# Remove small peaks
n = search_descending(values_norm, relative_peak_threshold)
indices = indices[:n]
directions = sphere.vertices[indices]
# Remove peaks too close together
directions, uniq = remove_similar_vertices(directions,
min_separation_angle,
return_index=True)
values = values[uniq]
indices = indices[uniq]
return directions, values, indices
class PeaksAndMetrics(object):
pass
def _peaks_from_model_parallel(model, data, sphere, relative_peak_threshold,
min_separation_angle, mask, return_odf,
return_sh, gfa_thr, normalize_peaks,
sh_order, sh_basis_type, npeaks, B, invB, nbr_processes):
if nbr_processes is None:
try:
nbr_processes = cpu_count()
except NotImplementedError:
warn("Cannot determine number of cpus. \
returns peaks_from_model(..., parallel=False).")
return peaks_from_model(model, data, sphere,
relative_peak_threshold,
min_separation_angle, mask, return_odf,
return_sh, gfa_thr, normalize_peaks,
sh_order, sh_basis_type, npeaks,
parallel=False)
shape = list(data.shape)
data = np.reshape(data, (-1, shape[-1]))
n = data.shape[0]
nbr_chunks = nbr_processes ** 2
chunk_size = int(np.ceil(n / nbr_chunks))
indices = list(zip(np.arange(0, n, chunk_size),
np.arange(0, n, chunk_size) + chunk_size))
with InTemporaryDirectory() as tmpdir:
data_file_name = path.join(tmpdir, 'data.npy')
np.save(data_file_name, data)
if mask is not None:
mask = mask.flatten()
mask_file_name = path.join(tmpdir, 'mask.npy')
np.save(mask_file_name, mask)
else:
mask_file_name = None
pool = Pool(nbr_processes)
pam_res = pool.map(_peaks_from_model_parallel_sub,
zip(repeat((data_file_name, mask_file_name)),
indices,
repeat(model),
repeat(sphere),
repeat(relative_peak_threshold),
repeat(min_separation_angle),
repeat(return_odf),
repeat(return_sh),
repeat(gfa_thr),
repeat(normalize_peaks),
repeat(sh_order),
repeat(sh_basis_type),
repeat(npeaks),
repeat(B),
repeat(invB)))
pool.close()
pam = PeaksAndMetrics()
# use memmap to reduce the memory usage
pam.gfa = np.memmap(path.join(tmpdir, 'gfa.npy'),
dtype=pam_res[0].gfa.dtype,
mode='w+',
shape=(data.shape[0]))
pam.peak_dirs = np.memmap(path.join(tmpdir, 'peak_dirs.npy'),
dtype=pam_res[0].peak_dirs.dtype,
mode='w+',
shape=(data.shape[0], npeaks, 3))
pam.peak_values = np.memmap(path.join(tmpdir, 'peak_values.npy'),
dtype=pam_res[0].peak_values.dtype,
mode='w+',
shape=(data.shape[0], npeaks))
pam.peak_indices = np.memmap(path.join(tmpdir, 'peak_indices.npy'),
dtype=pam_res[0].peak_indices.dtype,
mode='w+',
shape=(data.shape[0], npeaks))
pam.qa = np.memmap(path.join(tmpdir, 'qa.npy'),
dtype=pam_res[0].qa.dtype,
mode='w+',
shape=(data.shape[0], npeaks))
if return_sh:
nbr_shm_coeff = (sh_order + 2) * (sh_order + 1) / 2
pam.shm_coeff = np.memmap(path.join(tmpdir, 'shm.npy'),
dtype=pam_res[0].shm_coeff.dtype,
mode='w+',
shape=(data.shape[0], nbr_shm_coeff))
pam.B = pam_res[0].B
else:
pam.shm_coeff = None
pam.invB = None
if return_odf:
pam.odf = np.memmap(path.join(tmpdir, 'odf.npy'),
dtype=pam_res[0].odf.dtype,
mode='w+',
shape=(data.shape[0], len(sphere.vertices)))
else:
pam.odf = None
# copy subprocesses pam to a single pam (memmaps)
for i, (start_pos, end_pos) in enumerate(indices):
pam.gfa[start_pos: end_pos] = pam_res[i].gfa
pam.peak_dirs[start_pos: end_pos] = pam_res[i].peak_dirs
pam.peak_values[start_pos: end_pos] = pam_res[i].peak_values
pam.peak_indices[start_pos: end_pos] = pam_res[i].peak_indices
pam.qa[start_pos: end_pos] = pam_res[i].qa
if return_sh:
pam.shm_coeff[start_pos: end_pos] = pam_res[i].shm_coeff
if return_odf:
pam.odf[start_pos: end_pos] = pam_res[i].odf
pam_res = None
# load memmaps to arrays and reshape the metric
shape[-1] = -1
pam.gfa = np.reshape(np.array(pam.gfa), shape[:-1])
pam.peak_dirs = np.reshape(np.array(pam.peak_dirs), shape + [3])
pam.peak_values = np.reshape(np.array(pam.peak_values), shape)
pam.peak_indices = np.reshape(np.array(pam.peak_indices), shape)
pam.qa = np.reshape(np.array(pam.qa), shape)
if return_sh:
pam.shm_coeff = np.reshape(np.array(pam.shm_coeff), shape)
if return_odf:
pam.odf = np.reshape(np.array(pam.odf), shape)
# Make sure all worker processes have exited before leaving context
# manager in order to prevent temporary file deletion errors in windows
pool.join()
return pam
def _peaks_from_model_parallel_sub(args):
(data_file_name, mask_file_name) = args[0]
(start_pos, end_pos) = args[1]
model = args[2]
sphere = args[3]
relative_peak_threshold = args[4]
min_separation_angle = args[5]
return_odf = args[6]
return_sh = args[7]
gfa_thr = args[8]
normalize_peaks = args[9]
sh_order = args[10]
sh_basis_type = args[11]
npeaks = args[12]
B = args[13]
invB = args[14]
data = np.load(data_file_name, mmap_mode='r')[start_pos:end_pos]
if mask_file_name is not None:
mask = np.load(mask_file_name, mmap_mode='r')[start_pos:end_pos]
else:
mask = None
return peaks_from_model(model, data, sphere, relative_peak_threshold,
min_separation_angle, mask, return_odf,
return_sh, gfa_thr, normalize_peaks,
sh_order, sh_basis_type, npeaks, B, invB,
parallel=False, nbr_processes=None)
def peaks_from_model(model, data, sphere, relative_peak_threshold,
min_separation_angle, mask=None, return_odf=False,
return_sh=True, gfa_thr=0, normalize_peaks=False,
sh_order=8, sh_basis_type=None, npeaks=5, B=None, invB=None,
parallel=False, nbr_processes=None):
"""Fits the model to data and computes peaks and metrics
Parameters
----------
model : a model instance
`model` will be used to fit the data.
sphere : Sphere
The Sphere providing discrete directions for evaluation.
relative_peak_threshold : float
Only return peaks greater than ``relative_peak_threshold * m`` where m
is the largest peak.
min_separation_angle : float in [0, 90] The minimum distance between
directions. If two peaks are too close only the larger of the two is
returned.
mask : array, optional
If `mask` is provided, voxels that are False in `mask` are skipped and
no peaks are returned.
return_odf : bool
If True, the odfs are returned.
return_sh : bool
If True, the odf as spherical harmonics coefficients is returned
gfa_thr : float
Voxels with gfa less than `gfa_thr` are skipped, no peaks are returned.
normalize_peaks : bool
If true, all peak values are calculated relative to `max(odf)`.
sh_order : int, optional
Maximum SH order in the SH fit. For `sh_order`, there will be
``(sh_order + 1) * (sh_order + 2) / 2`` SH coefficients (default 8).
sh_basis_type : {None, 'mrtrix', 'fibernav'}
``None`` for the default dipy basis which is the fibernav basis,
``mrtrix`` for the MRtrix basis, and
``fibernav`` for the FiberNavigator basis
sh_smooth : float, optional
Lambda-regularization in the SH fit (default 0.0).
npeaks : int
Maximum number of peaks found (default 5 peaks).
B : ndarray, optional
Matrix that transforms spherical harmonics to spherical function
``sf = np.dot(sh, B)``.
invB : ndarray, optional
Inverse of B.
parallel: bool
If True, use multiprocessing to compute peaks and metric
(default False).
nbr_processes: int
If `parallel == True`, the number of subprocesses to use
(default multiprocessing.cpu_count()).
Returns
-------
pam : PeaksAndMetrics
An object with ``gfa``, ``peak_directions``, ``peak_values``,
``peak_indices``, ``odf``, ``shm_coeffs`` as attributes
"""
if return_sh and (B is None or invB is None):
B, invB = sh_to_sf_matrix(
sphere, sh_order, sh_basis_type, return_inv=True)
if parallel:
# It is mandatory to provide B and invB to the parallel function.
# Otherwise, a call to np.linalg.pinv is made in a subprocess and
# makes it timeout on some system.
# see https://github.com/nipy/dipy/issues/253 for details
return _peaks_from_model_parallel(model,
data, sphere,
relative_peak_threshold,
min_separation_angle,
mask, return_odf,
return_sh,
gfa_thr,
normalize_peaks,
sh_order,
sh_basis_type,
npeaks,
B,
invB,
nbr_processes)
shape = data.shape[:-1]
if mask is None:
mask = np.ones(shape, dtype='bool')
else:
if mask.shape != shape:
raise ValueError("Mask is not the same shape as data.")
gfa_array = np.zeros(shape)
qa_array = np.zeros((shape + (npeaks,)))
peak_dirs = np.zeros((shape + (npeaks, 3)))
peak_values = np.zeros((shape + (npeaks,)))
peak_indices = np.zeros((shape + (npeaks,)), dtype='int')
peak_indices.fill(-1)
if return_sh:
n_shm_coeff = (sh_order + 2) * (sh_order + 1) / 2
shm_coeff = np.zeros((shape + (n_shm_coeff,)))
if return_odf:
odf_array = np.zeros((shape + (len(sphere.vertices),)))
global_max = -np.inf
for idx in ndindex(shape):
if not mask[idx]:
continue
odf = model.fit(data[idx]).odf(sphere)
if return_sh:
shm_coeff[idx] = np.dot(odf, invB)
if return_odf:
odf_array[idx] = odf
gfa_array[idx] = gfa(odf)
if gfa_array[idx] < gfa_thr:
global_max = max(global_max, odf.max())
continue
# Get peaks of odf
direction, pk, ind = peak_directions(odf, sphere,
relative_peak_threshold,
min_separation_angle)
# Calculate peak metrics
if pk.shape[0] != 0:
global_max = max(global_max, pk[0])
n = min(npeaks, pk.shape[0])
qa_array[idx][:n] = pk[:n] - odf.min()
peak_dirs[idx][:n] = direction[:n]
peak_indices[idx][:n] = ind[:n]
peak_values[idx][:n] = pk[:n]
if normalize_peaks:
peak_values[idx][:n] /= pk[0]
peak_dirs[idx] *= peak_values[idx][:, None]
qa_array /= global_max
pam = PeaksAndMetrics()
pam.peak_dirs = peak_dirs
pam.peak_values = peak_values
pam.peak_indices = peak_indices
pam.gfa = gfa_array
pam.qa = qa_array
if return_sh:
pam.shm_coeff = shm_coeff
pam.B = B
else:
pam.shm_coeff = None
pam.B = None
if return_odf:
pam.odf = odf_array
else:
pam.odf = None
return pam
def gfa(samples):
"""The general fractional anisotropy of a function evaluated
on the unit sphere"""
diff = samples - samples.mean(-1)[..., None]
n = samples.shape[-1]
numer = n * (diff * diff).sum(-1)
denom = (n - 1) * (samples * samples).sum(-1)
return np.sqrt(numer / denom)
def reshape_peaks_for_visualization(peaks):
"""Reshape peaks for visualization.
Reshape and convert to float32 a set of peaks for visualisation with mrtrix
or the fibernavigator.
Parameters:
-----------
peaks: nd array (..., N, 3) or PeaksAndMetrics object
The peaks to be reshaped and converted to float32.
Returns:
--------
peaks : nd array (..., 3*N)
"""
if isinstance(peaks, PeaksAndMetrics):
peaks = peaks.peak_dirs
return peaks.reshape(np.append(peaks.shape[:-2], -1)).astype('float32')
|