This file is indexed.

/usr/share/pyshared/dipy/reconst/eit.py is in python-dipy 0.7.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import warnings
import numpy as np
from scipy.ndimage import map_coordinates
from dipy.reconst.recspeed import le_to_odf, sum_on_blocks_1d
from dipy.reconst.dsi import project_hemisph_bvecs
from scipy.ndimage.filters import laplace,gaussian_laplace
from scipy.ndimage import zoom,generic_laplace,correlate1d
from dipy.core.geometry import sphere2cart,cart2sphere,vec2vec_rotmat
from dipy.tracking.propspeed import map_coordinates_trilinear_iso
from dipy.reconst.odf import OdfModel


###############################################
# MODULE TEMPORARILY DISABLED FOR REFACTORING #
###############################################

import nose
class UnderConstruction(nose.SkipTest):
    pass

raise UnderConstruction()

###############################################



class DiffusionNablaModel(OdfModel):
    def __init__(self, bvals, gradients, odf_sphere='symmetric362',
                 half_sphere_grads=False, fast=True):
        ''' Reconstruct the signal using Diffusion Nabla Imaging

        As described in E.Garyfallidis, "Towards an accurate brain
        tractograph"tractograph, PhD thesis, 2011.

        Parameters
        -----------
        bvals : array, shape (N,)
        gradients : array, shape (N,3) also known as bvecs
        odf_sphere : str or tuple, optional
            If str, then load sphere of given name using ``get_sphere``.
            If tuple, gives (vertices, faces) for sphere.
        filter : array, shape(len(vertices),)
            default is None (using standard hanning filter for DSI)
        half_sphere_grads : boolean Default(False)
            in order to create the q-space we use the bvals and gradients.
            If the gradients are only one hemisphere then

        See also
        ----------
        dipy.reconst.eit.EquatorialInversionModel, dipy.reconst.dti.TensorModel, dipy.reconst.dsi.DiffusionSpectrumModel
        '''

        #check if bvectors are provided only on a hemisphere
        if half_sphere_grads==True:
            pass
            #bvals=np.append(bvals.copy(),bvals[1:].copy())
            #gradients=np.append(gradients.copy(),-gradients[1:].copy(),axis=0)
            #data=np.append(data.copy(),data[...,1:].copy(),axis=-1)

        #load bvals and bvecs
        self.bvals=bvals
        gradients[np.isnan(gradients)] = 0.
        self.gradients=gradients
        #save number of total diffusion volumes
        self.dn=self.gradients.shape[0] #data.shape[-1]
        odf_vertices, odf_faces = sphere_vf_from(odf_sphere)
        self.set_odf_vertices(odf_vertices,None,odf_faces)
        self.odfn=odf_vertices.shape[0]

        #odf sampling radius
        self.radius=np.arange(0,5,.2)
        #self.radiusn=len(self.radius)
        #self.create_qspace(bvals,gradients,16,8)
        #peak threshold
        #self.peak_thr=.7
        #equatorial zone
        self.zone=5.
        self.gaussian_weight=0.05
        self.fast=fast
        if fast==True:
            self.evaluate_odf=self.fast_odf
        else:
            self.evaluate_odf=self.slow_odf
        self.precompute()

    def precompute(self):

        self.radiusn=len(self.radius)
        self.create_qspace(self.bvals,self.gradients,17,8)
        if self.fast==False:
            self.radon_params()
            self.precompute_interp_coords()
        if self.fast==True:
            self.precompute_fast_coords()
            self.precompute_equator_indices(self.zone)
        self.precompute_angular(self.gaussian_weight)

    def precompute_botox(self,smooth,level):
        self.botox_smooth=.05
        self.botox_level=.3

    def precompute_angular(self,smooth):
        if smooth==None:
            self.E=None
            return
        self.W=np.dot(self.odf_vertices,self.odf_vertices.T)
        self.W=self.W.astype('f8')
        E=np.exp(self.W/smooth)
        self.E=E/np.sum(E,axis=1)[:,None]

    def create_qspace(self,bvals,gradients,size,origin):
        bv=bvals
        bmin=np.sort(bv)[1]
        bv=np.sqrt(bv/bmin)
        qtable=np.vstack((bv,bv,bv)).T*gradients
        qtable=np.floor(qtable+.5)
        self.qtable=qtable
        self.q=qtable+origin
        self.q=self.q.astype('i8')
        self.origin=origin
        self.sz=size

    def radon_params(self,ang_res=64):
        #calculate radon integration parameters
        phis=np.linspace(0,2*np.pi,ang_res)[:-1]
        planars=[]
        for phi in phis:
            planars.append(sphere2cart(1,np.pi/2,phi))
        planars=np.array(planars)
        planarsR=[]
        for v in self.odf_vertices:
            R=vec2vec_rotmat(np.array([0,0,1]),v)
            planarsR.append(np.dot(R,planars.T).T)
        self.equators=planarsR
        self.equatorn=len(phis)

    def slow_odf(self,s):
        """ Calculate the orientation distribution function
        """
        odf = np.zeros(self.odfn)
        Eq=np.zeros((self.sz,self.sz,self.sz))
        for i in range(self.dn):
            Eq[self.q[i][0],self.q[i][1],self.q[i][2]]=s[i]/np.float(s[0])
        LEq=laplace(Eq)
        self.Eq=Eq
        self.LEq=LEq
        LEs=map_coordinates(LEq,self.Xs,order=1)
        le_to_odf(odf,LEs,self.radius,self.odfn,self.radiusn,self.equatorn)
        return odf

    def odfs(self):
        return self.ODF

    def fast_odf(self,s):
        odf = np.zeros(self.odfn)
        Eq=np.zeros((self.sz,self.sz,self.sz))
        for i in xrange(self.dn):
            Eq[self.q[i][0],self.q[i][1],self.q[i][2]]+=s[i]/s[0]
        LEq=laplace(Eq)
        LEs=map_coordinates(LEq,self.Ys.T,order=1)
        LEs=LEs.reshape(self.odfn,self.radiusn)
        LEs=LEs*self.radius
        LEsum=np.sum(LEs,axis=1)
        for i in xrange(self.odfn):
            odf[i]=np.sum(LEsum[self.eqinds[i]])/self.eqinds_len[i]
        return -odf

    def precompute_equator_indices(self,thr=5):
        eq_inds=[]
        eq_inds_complete=[]
        eq_inds_len=np.zeros(self.odfn)
        for (i,v) in enumerate(self.odf_vertices):
            eq_inds.append([])
            for (j,k) in enumerate(self.odf_vertices):
                vk=np.clip(np.dot(v,k),-1,1)
                angle=np.rad2deg(np.arccos(vk))
                if  angle < 90 + thr and angle > 90 - thr:
                    eq_inds[i].append(j)
                    eq_inds_complete.append(j)
            eq_inds_len[i]=len(eq_inds[i])
        self.eqinds=eq_inds
        self.eqinds_com=np.array(eq_inds_complete)
        self.eqinds_len=np.array(eq_inds_len,dtype='i8')

    def precompute_fast_coords(self):
        Ys=[]
        for m in range(self.odfn):
            for q in self.radius:
                #print disk.shape
                xi=self.origin + q*self.odf_vertices[m,0]
                yi=self.origin + q*self.odf_vertices[m,1]
                zi=self.origin + q*self.odf_vertices[m,2]
                Ys.append(np.vstack((xi,yi,zi)).T)
        self.Ys=np.ascontiguousarray(np.concatenate(Ys))
        self.Ysn=self.Ys.shape[0]

    def precompute_interp_coords(self):
        Xs=[]
        for m in range(self.odfn):
            for q in self.radius:
                #print disk.shape
                xi=self.origin + q*self.equators[m][:,0]
                yi=self.origin + q*self.equators[m][:,1]
                zi=self.origin + q*self.equators[m][:,2]
                Xs.append(np.vstack((xi,yi,zi)).T)
        self.Xs=np.concatenate(Xs).T

class EquatorialInversionModel(DiffusionNablaModel):
    ''' Reconstruct the signal using Equatorial Inversion Transform

        As described in E.Garyfallidis, "Towards an accurate brain
        tractograph"tractograph, PhD thesis, 2011.

        Parameters
        -----------
        bvals : array, shape (N,)
        gradients : array, shape (N,3) also known as bvecs
        odf_sphere : str or tuple, optional
            If str, then load sphere of given name using ``get_sphere``.
            If tuple, gives (vertices, faces) for sphere.
        filter : array, shape(len(vertices),)
            default is None (using standard hanning filter for DSI)
        half_sphere_grads : boolean Default(False)
            in order to create the q-space we use the bvals and gradients.
            If the gradients are only one hemisphere then

        See also
        ----------
        dipy.reconst.eit.EquatorialInversionModel, dipy.reconst.dti.TensorModel, dipy.reconst.dsi.DiffusionSpectrumModel
        '''

    def set_operator(self,name):
        self.operator=name

    def set_mode(self,order=1,zoom=1,mode='constant'):
        self.order=order
        self.mode=mode
        self.zoom=zoom
        #self.Eqs=[]

    def fast_odf(self,s):
        odf = np.zeros(self.odfn)
        Eq=np.zeros((self.sz,self.sz,self.sz))
        #for i in range(self.dn):
        #    Eq[self.q[i][0],self.q[i][1],self.q[i][2]]+=s[i]/s[0]
        Eq[self.q[:,0],self.q[:,1],self.q[:,2]]=s[:]/np.float(s[0])
        #self.Eqs.append(Eq)
        if  self.operator=='laplacian':
            LEq=laplace(Eq)
            sign=-1
        if self.operator=='laplap':
            LEq=laplace(laplace(Eq))
            sign=1
        if  self.operator=='signal':
            LEq=Eq
            sign=1
        #LEs=map_coordinates(LEq,self.Ys.T,order=1)
        #"""
        LEs=np.zeros(self.Ysn)
        strides=np.array(LEq.strides,'i8')
        map_coordinates_trilinear_iso(LEq,self.Ys,
                                      strides,self.Ysn, LEs)
        #LEs=map_coordinates(LEq,self.zoom*self.Ys,order=1)
        LEs=LEs.reshape(self.odfn,self.radiusn)
        LEs=LEs*self.radius
        #LEs=LEs*self.radius*self.zoom
        LEsum=np.sum(LEs,axis=1)
        #This is what the following code is doing
        #for i in xrange(self.odfn):
        #    odf[i]=np.sum(LEsum[self.eqinds[i]])/self.eqinds_len[i]
        #odf2=odf.copy()
        LES=LEsum[self.eqinds_com]
        sum_on_blocks_1d(LES,self.eqinds_len,odf,self.odfn)
        odf=odf/self.eqinds_len
        return self.angular_weighting(sign*odf)

    def angular_weighting(self,odf):
        if self.E==None:
            return odf
        else:
            return np.dot(odf[None,:],self.E).ravel()