/usr/share/pyshared/dipy/reconst/csdeconv.py is in python-dipy 0.7.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 | from __future__ import division, print_function, absolute_import
import warnings
import numpy as np
from scipy.integrate import quad
from dipy.reconst.odf import OdfModel
from dipy.reconst.cache import Cache
from dipy.reconst.multi_voxel import multi_voxel_fit
from dipy.reconst.shm import (sph_harm_ind_list, real_sph_harm,
sph_harm_lookup, lazy_index, SphHarmFit)
from dipy.data import get_sphere
from dipy.core.geometry import cart2sphere
from dipy.core.ndindex import ndindex
from dipy.sims.voxel import single_tensor
from scipy.special import lpn, gamma
from dipy.reconst.dti import TensorModel, fractional_anisotropy
from scipy.integrate import quad
class ConstrainedSphericalDeconvModel(OdfModel, Cache):
def __init__(self, gtab, response, reg_sphere=None, sh_order=8, lambda_=1, tau=0.1):
r""" Constrained Spherical Deconvolution (CSD) [1]_.
Spherical deconvolution computes a fiber orientation distribution (FOD), also
called fiber ODF (fODF) [2]_, as opposed to a diffusion ODF as the QballModel
or the CsaOdfModel. This results in a sharper angular profile with better
angular resolution that is the best object to be used for later deterministic
and probabilistic tractography [3]_.
A sharp fODF is obtained because a single fiber *response* function is injected
as *a priori* knowledge. The response function is often data-driven and thus,
comes as input to the ConstrainedSphericalDeconvModel. It will be used as deconvolution
kernel, as described in [1]_.
Parameters
----------
gtab : GradientTable
response : tuple
A tuple with two elements. The first is the eigen-values as an (3,)
ndarray and the second is the signal value for the response
function without diffusion weighting. This is to be able to
generate a single fiber synthetic signal. The response function
will be used as deconvolution kernel ([1]_)
reg_sphere : Sphere
sphere used to build the regularization B matrix
sh_order : int
maximal spherical harmonics order
lambda_ : float
weight given to the constrained-positivity regularization part of the
deconvolution equation (see [1]_)
tau : float
threshold controlling the amplitude below which the corresponding fODF is assumed to be zero.
Ideally, tau should be set to zero. However, to improve the stability of the algorithm, tau
is set to tau*100 % of the mean fODF amplitude (here, 10% by default) (see [1]_)
References
----------
.. [1] Tournier, J.D., et al. NeuroImage 2007. Robust determination of the fibre orientation
distribution in diffusion MRI: Non-negativity constrained super-resolved spherical
deconvolution
.. [2] Descoteaux, M., et al. IEEE TMI 2009. Deterministic and Probabilistic Tractography Based
on Complex Fibre Orientation Distributions
.. [3] C\^ot\'e, M-A., et al. Medical Image Analysis 2013. Tractometer: Towards validation
of tractography pipelines
.. [4] Tournier, J.D, et al. Imaging Systems and Technology 2012. MRtrix: Diffusion
Tractography in Crossing Fiber Regions
"""
m, n = sph_harm_ind_list(sh_order)
self.m, self.n = m, n
self._where_b0s = lazy_index(gtab.b0s_mask)
self._where_dwi = lazy_index(~gtab.b0s_mask)
no_params = ((sh_order + 1) * (sh_order + 2)) / 2
if no_params > np.sum(gtab.b0s_mask == False):
msg = "Number of parameters required for the fit are more "
msg += "than the actual data points"
warnings.warn(msg, UserWarning)
x, y, z = gtab.gradients[self._where_dwi].T
r, theta, phi = cart2sphere(x, y, z)
# for the gradient sphere
self.B_dwi = real_sph_harm(m, n, theta[:, None], phi[:, None])
# for the sphere used in the regularization positivity constraint
if reg_sphere is None:
self.sphere = get_sphere('symmetric362')
else:
self.sphere = reg_sphere
r, theta, phi = cart2sphere(self.sphere.x, self.sphere.y, self.sphere.z)
self.B_reg = real_sph_harm(m, n, theta[:, None], phi[:, None])
if response is None:
S_r = estimate_response(gtab, np.array([0.0015, 0.0003, 0.0003]), 1)
else:
S_r = estimate_response(gtab, response[0], response[1])
r_sh = np.linalg.lstsq(self.B_dwi, S_r[self._where_dwi])[0]
r_rh = sh_to_rh(r_sh, m, n)
self.R = forward_sdeconv_mat(r_rh, n)
# scale lambda_ to account for differences in the number of
# SH coefficients and number of mapped directions
# This is exactly what is done in [4]_
self.lambda_ = lambda_ * self.R.shape[0] * r_rh[0] / self.B_reg.shape[0]
self.sh_order = sh_order
self.tau = tau
@multi_voxel_fit
def fit(self, data):
s_sh = np.linalg.lstsq(self.B_dwi, data[self._where_dwi])[0]
shm_coeff, num_it = csdeconv(s_sh, self.sh_order, self.R, self.B_reg, self.lambda_, self.tau)
return SphHarmFit(self, shm_coeff, None)
class ConstrainedSDTModel(OdfModel, Cache):
def __init__(self, gtab, ratio, reg_sphere=None, sh_order=8, lambda_=1., tau=0.1):
r""" Spherical Deconvolution Transform (SDT) [1]_.
The SDT computes a fiber orientation distribution (FOD) as opposed to a diffusion
ODF as the QballModel or the CsaOdfModel. This results in a sharper angular
profile with better angular resolution. The Contrained SDTModel is similar
to the Constrained CSDModel but mathematically it deconvolves the q-ball ODF
as oppposed to the HARDI signal (see [1]_ for a comparison and a through discussion).
A sharp fODF is obtained because a single fiber *response* function is injected
as *a priori* knowledge. In the SDTModel, this response is a single fiber q-ball
ODF as opposed to a single fiber signal function for the CSDModel. The response function
will be used as deconvolution kernel.
Parameters
----------
gtab : GradientTable
ratio : float
ratio of the smallest vs the largest eigenvalue of the single prolate tensor response function
reg_sphere : Sphere
sphere used to build the regularization B matrix
sh_order : int
maximal spherical harmonics order
lambda_ : float
weight given to the constrained-positivity regularization part of the
deconvolution equation
tau : float
threshold (tau *mean(fODF)) controlling the amplitude below
which the corresponding fODF is assumed to be zero.
References
----------
.. [1] Descoteaux, M., et al. IEEE TMI 2009. Deterministic and Probabilistic Tractography Based
on Complex Fibre Orientation Distributions.
"""
m, n = sph_harm_ind_list(sh_order)
self.m, self.n = m, n
self._where_b0s = lazy_index(gtab.b0s_mask)
self._where_dwi = lazy_index(~gtab.b0s_mask)
no_params = ((sh_order + 1) * (sh_order + 2)) / 2
if no_params > np.sum(gtab.b0s_mask == False):
msg = "Number of parameters required for the fit are more "
msg += "than the actual data points"
warnings.warn(msg, UserWarning)
x, y, z = gtab.gradients[self._where_dwi].T
r, theta, phi = cart2sphere(x, y, z)
# for the gradient sphere
self.B_dwi = real_sph_harm(m, n, theta[:, None], phi[:, None])
# for the odf sphere
if reg_sphere is None:
self.sphere = get_sphere('symmetric362')
else:
self.sphere = reg_sphere
r, theta, phi = cart2sphere(self.sphere.x, self.sphere.y, self.sphere.z)
self.B_reg = real_sph_harm(m, n, theta[:, None], phi[:, None])
self.R, self.P = forward_sdt_deconv_mat(ratio, n)
# scale lambda_ to account for differences in the number of
# SH coefficients and number of mapped directions
self.lambda_ = lambda_ * self.R.shape[0] * self.R[0, 0] / self.B_reg.shape[0]
self.tau = tau
self.sh_order = sh_order
@multi_voxel_fit
def fit(self, data):
s_sh = np.linalg.lstsq(self.B_dwi, data[self._where_dwi])[0]
# initial ODF estimation
odf_sh = np.dot(self.P, s_sh)
qball_odf = np.dot(self.B_reg, odf_sh)
Z = np.linalg.norm(qball_odf)
# normalize ODF
odf_sh /= Z
shm_coeff, num_it = odf_deconv(odf_sh, self.R, self.B_reg,
self.lambda_, self.tau)
# print 'SDT CSD converged after %d iterations' % num_it
return SphHarmFit(self, shm_coeff, None)
def estimate_response(gtab, evals, S0):
""" Estimate single fiber response function
Parameters
----------
gtab : GradientTable
evals : ndarray
S0 : float
non diffusion weighted
Returns
-------
S : estimated signal
"""
evecs = np.array([[0, 0, 1],
[0, 1, 0],
[1, 0, 0]])
return single_tensor(gtab, S0, evals, evecs, snr=None)
def sh_to_rh(r_sh, m, n):
""" Spherical harmonics (SH) to rotational harmonics (RH)
Calculate the rotational harmonic decomposition up to
harmonic sh_order for an axially and antipodally
symmetric function. Note that all ``m != 0`` coefficients
will be ignored as axial symmetry is assumed. Hence, there
will be ``(sh_order/2 + 1)`` non-zero coefficients.
Parameters
----------
r_sh : ndarray (N,)
ndarray of SH coefficients for the single fiber response function.
These coefficients must correspond to the real spherical harmonic
functions produced by `shm.real_sph_harm`.
m : ndarray (N,)
The order of the spherical harmonic function associated with each
coefficient.
n : ndarray (N,)
The degree of the spherical harmonic function associated with each
coefficient.
Returns
-------
r_rh : ndarray (``(sh_order + 1)*(sh_order + 2)/2``,)
Rotational harmonics coefficients representing the input `r_sh`
See Also
--------
shm.real_sph_harm, shm.real_sym_sh_basis
References
----------
.. [1] Tournier, J.D., et al. NeuroImage 2007. Robust determination of the
fibre orientation distribution in diffusion MRI: Non-negativity
constrained super-resolved spherical deconvolution
"""
mask = m == 0
# The delta function at theta = phi = 0 is known to have zero coefficients
# where m != 0, therefore we need only compute the coefficients at m=0.
dirac_sh = gen_dirac(0, n[mask], 0, 0)
r_rh = r_sh[mask] / dirac_sh
return r_rh
def gen_dirac(m, n, theta, phi):
""" Generate Dirac delta function orientated in (theta, phi) on the sphere
The spherical harmonics (SH) representation of this Dirac is returned as
coefficients to spherical harmonic functions produced by
`shm.real_sph_harm`.
Parameters
----------
m : ndarray (N,)
The order of the spherical harmonic function associated with each
coefficient.
n : ndarray (N,)
The degree of the spherical harmonic function associated with each
coefficient.
theta : float [0, 2*pi]
The azimuthal (longitudinal) coordinate.
phi : float [0, pi]
The polar (colatitudinal) coordinate.
See Also
--------
shm.real_sph_harm, shm.real_sym_sh_basis
Returns
-------
dirac : ndarray
SH coefficients representing the Dirac function
"""
return real_sph_harm(m, n, theta, phi)
def forward_sdeconv_mat(r_rh, n):
""" Build forward spherical deconvolution matrix
Parameters
----------
r_rh : ndarray
ndarray of rotational harmonics coefficients for the single fiber
response function. Each element `rh[i]` is associated with spherical
harmonics of degree `2*i`.
n : ndarray
The degree of spherical harmonic function associated with each row of
the deconvolution matrix. Only even degrees are allowed
Returns
-------
R : ndarray (N, N)
Deconvolution matrix with shape (N, N)
"""
if np.any(n % 2):
raise ValueError("n has odd degrees, expecting only even degrees")
return np.diag(r_rh[n // 2])
def forward_sdt_deconv_mat(ratio, n, r2_term=False):
""" Build forward sharpening deconvolution transform (SDT) matrix
Parameters
----------
ratio : float
ratio = $\frac{\lambda_2}{\lambda_1}$ of the single fiber response
function
n : ndarray (N,)
The degree of spherical harmonic function associated with each row of
the deconvolution matrix. Only even degrees are allowed.
r2_term : bool
True if ODF comes from an ODF computed from a model using the $r^2$ term
in the integral. For example, DSI, GQI, SHORE, CSA, Tensor, Multi-tensor
ODFs. This results in using the proper analytical response function
solution solving from the single-fiber ODF with the r^2 term. This
derivation is not published anywhere but is very similar to [1]_.
Returns
-------
R : ndarray (N, N)
SDT deconvolution matrix
P : ndarray (N, N)
Funk-Radon Transform (FRT) matrix
References
----------
.. [1] Descoteaux, M. PhD Thesis. INRIA Sophia-Antipolis. 2008.
"""
if np.any(n % 2):
raise ValueError("n has odd degrees, expecting only even degrees")
n_degrees = n.max() // 2 + 1
sdt = np.zeros(n_degrees) # SDT matrix
frt = np.zeros(n_degrees) # FRT (Funk-Radon transform) q-ball matrix
for l in np.arange(0, n_degrees*2, 2):
if r2_term :
sharp = quad(lambda z: lpn(l, z)[0][-1] * gamma(1.5) * np.sqrt( ratio / (4 * np.pi ** 3) ) /
np.power((1 - (1 - ratio) * z ** 2), 1.5), -1., 1.)
else :
sharp = quad(lambda z: lpn(l, z)[0][-1] * np.sqrt(1 / (1 - (1 - ratio) * z * z)), -1., 1.)
sdt[l / 2] = sharp[0]
frt[l / 2] = 2 * np.pi * lpn(l, 0)[0][-1]
idx = n // 2
b = sdt[idx]
bb = frt[idx]
return np.diag(b), np.diag(bb)
def csdeconv(s_sh, sh_order, R, B_reg, lambda_=1., tau=0.1):
r""" Constrained-regularized spherical deconvolution (CSD) [1]_
Deconvolves the axially symmetric single fiber response
function `r_rh` in rotational harmonics coefficients from the spherical function
`s_sh` in SH coefficients.
Parameters
----------
s_sh : ndarray (``(sh_order + 1)*(sh_order + 2)/2``,)
ndarray of SH coefficients for the spherical function to be deconvolved
sh_order : int
maximal SH order of the SH representation
R : ndarray (``(sh_order + 1)*(sh_order + 2)/2``, ``(sh_order + 1)*(sh_order + 2)/2``)
forward spherical harmonics matrix
B_reg : ndarray (``(sh_order + 1)*(sh_order + 2)/2``, ``(sh_order + 1)*(sh_order + 2)/2``)
SH basis matrix used for deconvolution
lambda_ : float
lambda parameter in minimization equation (default 1.0)
tau : float
threshold controlling the amplitude below which the corresponding fODF is assumed to be zero.
Ideally, tau should be set to zero. However, to improve the stability of the algorithm, tau
is set to tau*100 % of the max fODF amplitude (here, 10% by default). This is similar to peak
detection where peaks below 0.1 amplitude are usually considered noise peaks. Because SDT
is based on a q-ball ODF deconvolution, and not signal deconvolution, using the max instead
of mean (as in CSD), is more stable.
Returns
-------
fodf_sh : ndarray (``(sh_order + 1)*(sh_order + 2)/2``,)
Spherical harmonics coefficients of the constrained-regularized fiber ODF
num_it : int
Number of iterations in the constrained-regularization used for convergence
References
----------
.. [1] Tournier, J.D., et al. NeuroImage 2007. Robust determination of the fibre orientation
distribution in diffusion MRI: Non-negativity constrained super-resolved spherical
deconvolution
"""
# generate initial fODF estimate, truncated at SH order 4
fodf_sh = np.linalg.lstsq(R, s_sh)[0]
fodf_sh[15:] = 0
fodf = np.dot(B_reg, fodf_sh)
# set threshold on FOD amplitude used to identify 'negative' values
threshold = tau * np.mean(np.dot(B_reg, fodf_sh))
#print(np.min(fodf), np.max(fodf), np.mean(fodf), threshold, tau)
k = []
convergence = 50
for num_it in range(1, convergence + 1):
fodf = np.dot(B_reg, fodf_sh)
k2 = np.nonzero(fodf < threshold)[0]
if (k2.shape[0] + R.shape[0]) < B_reg.shape[1]:
warnings.warn('too few negative directions identified - failed to converge')
return fodf_sh, num_it
if num_it > 1 and k.shape[0] == k2.shape[0]:
if (k == k2).all():
return fodf_sh, num_it
k = k2
# This is the super-resolved trick.
# Wherever there is a negative amplitude value on the fODF, it
# concatenates a value to the S vector so that the estimation can
# focus on trying to eliminate it. In a sense, this "adds" a
# measurement, which can help to better estimate the fodf_sh, even if
# you have more SH coeffcients to estimate than actual S measurements.
M = np.concatenate((R, lambda_ * B_reg[k, :]))
S = np.concatenate((s_sh, np.zeros(k.shape)))
try:
fodf_sh = np.linalg.lstsq(M, S)[0]
except np.linalg.LinAlgError as lae:
# SVD did not converge in Linear Least Squares in current
# voxel. Proceeding with initial SH estimate for this voxel.
pass
warnings.warn('maximum number of iterations exceeded - failed to converge')
return fodf_sh, num_it
def odf_deconv(odf_sh, R, B_reg, lambda_=1., tau=0.1, r2_term=False):
r""" ODF constrained-regularized spherical deconvolution using
the Sharpening Deconvolution Transform (SDT) [1]_, [2]_.
Parameters
----------
odf_sh : ndarray (``(sh_order + 1)*(sh_order + 2)/2``,)
ndarray of SH coefficients for the ODF spherical function to be deconvolved
R : ndarray (``(sh_order + 1)(sh_order + 2)/2``, ``(sh_order + 1)(sh_order + 2)/2``)
SDT matrix in SH basis
B_reg : ndarray (``(sh_order + 1)(sh_order + 2)/2``, ``(sh_order + 1)(sh_order + 2)/2``)
SH basis matrix used for deconvolution
lambda_ : float
lambda parameter in minimization equation (default 1.0)
tau : float
threshold (tau *max(fODF)) controlling the amplitude below
which the corresponding fODF is assumed to be zero.
r2_term : bool
True if ODF is computed from model that uses the $r^2$ term in the integral.
Recall that Tuch's ODF (used in Q-ball Imaging [1]_) and the true normalized ODF
definition differ from a $r^2$ term in the ODF integral. The original Sharpening
Deconvolution Transform (SDT) technique [2]_ is expecting Tuch's ODF without
the $r^2$ (see [3]_ for the mathematical details).
Now, this function supports ODF that have been computed using the $r^2$ term because
the proper analytical response function has be derived.
For example, models such as DSI, GQI, SHORE, CSA, Tensor, Multi-tensor ODFs, should now
be deconvolved with the r2_term=True.
Returns
-------
fodf_sh : ndarray (``(sh_order + 1)(sh_order + 2)/2``,)
Spherical harmonics coefficients of the constrained-regularized fiber ODF
num_it : int
Number of iterations in the constrained-regularization used for convergence
References
----------
.. [1] Tuch, D. MRM 2004. Q-Ball Imaging.
.. [2] Descoteaux, M., et al. IEEE TMI 2009. Deterministic and Probabilistic Tractography Based
on Complex Fibre Orientation Distributions
.. [3] Descoteaux, M, PhD thesis, INRIA Sophia-Antipolis, 2008.
"""
# Generate initial fODF estimate, which is the ODF truncated at SH order 4
fodf_sh = np.linalg.lstsq(R, odf_sh)[0]
fodf_sh[15:] = 0
fodf = np.dot(B_reg, fodf_sh)
# if sharpening a q-ball odf (it is NOT properly normalized), we need to force normalization
# otherwise, for DSI, CSA, SHORE, Tensor odfs, they are normalized by construction
if ~r2_term :
Z = np.linalg.norm(fodf)
fodf_sh /= Z
fodf = np.dot(B_reg, fodf_sh)
threshold = tau * np.max(np.dot(B_reg, fodf_sh))
#print(np.min(fodf), np.max(fodf), np.mean(fodf), threshold, tau)
k = []
convergence = 50
for num_it in range(1, convergence + 1):
A = np.dot(B_reg, fodf_sh)
k2 = np.nonzero(A < threshold)[0]
if (k2.shape[0] + R.shape[0]) < B_reg.shape[1]:
warnings.warn('too few negative directions identified - failed to converge')
return fodf_sh, num_it
if num_it > 1 and k.shape[0] == k2.shape[0]:
if (k == k2).all():
return fodf_sh, num_it
k = k2
M = np.concatenate((R, lambda_ * B_reg[k, :]))
ODF = np.concatenate((odf_sh, np.zeros(k.shape)))
try:
fodf_sh = np.linalg.lstsq(M, ODF)[0]
except np.linalg.LinAlgError as lae:
# SVD did not converge in Linear Least Squares in current
# voxel. Proceeding with initial SH estimate for this voxel.
pass
warnings.warn('maximum number of iterations exceeded - failed to converge')
return fodf_sh, num_it
def odf_sh_to_sharp(odfs_sh, sphere, basis=None, ratio=3 / 15., sh_order=8, lambda_=1., tau=0.1,
r2_term=False):
r""" Sharpen odfs using the spherical deconvolution transform [1]_
This function can be used to sharpen any smooth ODF spherical function. In theory, this should
only be used to sharpen QballModel ODFs, but in practice, one can play with the deconvolution
ratio and sharpen almost any ODF-like spherical function. The constrained-regularization is stable
and will not only sharp the ODF peaks but also regularize the noisy peaks.
Parameters
----------
odfs_sh : ndarray (``(sh_order + 1)*(sh_order + 2)/2``, )
array of odfs expressed as spherical harmonics coefficients
sphere : Sphere
sphere used to build the regularization matrix
basis : {None, 'mrtrix', 'fibernav'}
different spherical harmonic basis. None is the fibernav basis as well.
ratio : float,
ratio of the smallest vs the largest eigenvalue of the single prolate tensor response function
(:math:`\frac{\lambda_2}{\lambda_1}`)
sh_order : int
maximal SH order of the SH representation
lambda_ : float
lambda parameter (see odfdeconv) (default 1.0)
tau : float
tau parameter in the L matrix construction (see odfdeconv) (default 0.1)
r2_term : bool
True if ODF is computed from model that uses the $r^2$ term in the integral.
Recall that Tuch's ODF (used in Q-ball Imaging [1]_) and the true normalized ODF
definition differ from a $r^2$ term in the ODF integral. The original Sharpening
Deconvolution Transform (SDT) technique [2]_ is expecting Tuch's ODF without
the $r^2$ (see [3]_ for the mathematical details).
Now, this function supports ODF that have been computed using the $r^2$ term because
the proper analytical response function has be derived.
For example, models such as DSI, GQI, SHORE, CSA, Tensor, Multi-tensor ODFs, should now
be deconvolved with the r2_term=True.
Returns
-------
fodf_sh : ndarray
sharpened odf expressed as spherical harmonics coefficients
References
----------
.. [1] Tuch, D. MRM 2004. Q-Ball Imaging.
.. [2] Descoteaux, M., et al. IEEE TMI 2009. Deterministic and Probabilistic Tractography Based
on Complex Fibre Orientation Distributions
.. [3] Descoteaux, M, et al. MRM 2007. Fast, Regularized and Analytical Q-Ball Imaging
"""
r, theta, phi = cart2sphere(sphere.x, sphere.y, sphere.z)
real_sym_sh = sph_harm_lookup[basis]
B_reg, m, n = real_sym_sh(sh_order, theta, phi)
R, P = forward_sdt_deconv_mat(ratio, n)
# scale lambda to account for differences in the number of
# SH coefficients and number of mapped directions
lambda_ = lambda_ * R.shape[0] * R[0, 0] / B_reg.shape[0]
fodf_sh = np.zeros(odfs_sh.shape)
for index in ndindex(odfs_sh.shape[:-1]):
fodf_sh[index], num_it = odf_deconv(odfs_sh[index], R, B_reg, lambda_=lambda_,
tau=tau, r2_term=r2_term)
return fodf_sh
def auto_response(gtab, data, roi_center=None, roi_radius=10, fa_thr=0.7):
""" Automatic estimation of response function using FA
Parameters
----------
gtab : GradientTable
data : ndarray
diffusion data
roi_center : tuple, (3,)
Center of ROI in data. If center is None, it is assumed that it is
the center of the volume with shape `data.shape[:3]`.
roi_radius : int
radius of cubic ROI
fa_thr : float
FA threshold
Returns
-------
response : tuple, (2,)
(`evals`, `S0`)
ratio : float
the ratio between smallest versus largest eigenvalue of the response
Notes
-----
In CSD there is an important pre-processing step: the estimation of the
fiber response function. In order to do this we look for voxels with very
anisotropic configurations. For example we can use an ROI (20x20x20) at
the center of the volume and store the signal values for the voxels with
FA values higher than 0.7. Of course, if we haven't precalculated FA we
need to fit a Tensor model to the datasets. Which is what we do in this
function.
For the response we also need to find the average S0 in the ROI. This is
possible using `gtab.b0s_mask()` we can find all the S0 volumes (which
correspond to b-values equal 0) in the dataset.
The `response` consists always of a prolate tensor created by averaging
the highest and second highest eigenvalues in the ROI with FA higher than
threshold. We also include the average S0s.
Finally, we also return the `ratio` which is used for the SDT models.
"""
ten = TensorModel(gtab)
if roi_center is None:
ci, cj, ck = np.array(data.shape[:3]) / 2
else:
ci, cj, ck = roi_center
w = roi_radius
roi = data[ci - w: ci + w, cj - w: cj + w, ck - w: ck + w]
tenfit = ten.fit(roi)
FA = fractional_anisotropy(tenfit.evals)
FA[np.isnan(FA)] = 0
indices = np.where(FA > fa_thr)
lambdas = tenfit.evals[indices][:, :2]
S0s = roi[indices][:, np.nonzero(gtab.b0s_mask)[0]]
S0 = np.mean(S0s)
l01 = np.mean(lambdas, axis=0)
evals = np.array([l01[0], l01[1], l01[1]])
response = (evals, S0)
ratio = evals[1]/evals[0]
return response, ratio
|