This file is indexed.

/usr/share/pyshared/dipy/io/dpy.py is in python-dipy 0.7.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
''' A class for handling large tractography datasets.

    It is built using the pytables tools which in turn implement 
    key features of the HDF5 (hierachical data format) API [1]_.

    References
    ----------
    .. [1] http://www.hdfgroup.org/HDF5/doc/H5.intro.html
'''

import numpy as np

# Conditional import machinery for pytables
from ..utils.optpkg import optional_package

# Allow import, but disable doctests, if we don't have pytables
tables, have_tables, setup_module = optional_package('tables')

# Make sure not to carry across setup module from * import
__all__ = ['Dpy']


class Dpy(object):

    def __init__(self,fname,mode='r',compression=0):
        ''' Advanced storage system for tractography based on HDF5

        Parameters
        ------------
        fname : str, full filename
        mode : 'r' read
         'w' write
         'r+' read and write only if file already exists
         'a'  read and write even if file doesn't exist (not used yet)
        compression : 0 no compression to 9 maximum compression

        Examples
        ----------
        >>> import os
        >>> from tempfile import mkstemp #temp file
        >>> from dipy.io.dpy import Dpy
        >>> fd,fname = mkstemp()
        >>> fname = fname + '.dpy' #add correct extension
        >>> dpw = Dpy(fname,'w')
        >>> A=np.ones((5,3))
        >>> B=2*A.copy()
        >>> C=3*A.copy()
        >>> dpw.write_track(A)
        >>> dpw.write_track(B)
        >>> dpw.write_track(C)    
        >>> dpw.close()    
        >>> dpr = Dpy(fname,'r')    
        >>> A=dpr.read_track()
        >>> B=dpr.read_track()    
        >>> T=dpr.read_tracksi([0,1,2,0,0,2])
        >>> dpr.close()
        >>> os.remove(fname) #delete file from disk
        
        '''                
        
        self.mode=mode        
        self.f = tables.openFile(fname, mode = self.mode)
        self.N = 5*10**9
        self.compression = compression
        
        if self.mode=='w':
            self.streamlines=self.f.createGroup(self.f.root,'streamlines')
            #create a version number
            self.version=self.f.createArray(self.f.root,'version',['0.0.1'],'Dpy Version Number')
            
            self.tracks = self.f.createEArray(self.f.root.streamlines, 'tracks',tables.Float32Atom(), (0, 3),
                    "scalar Float32 earray", tables.Filters(self.compression),expectedrows=self.N)            
            self.offsets = self.f.createEArray(self.f.root.streamlines, 'offsets',tables.Int64Atom(), (0,),
                    "scalar Int64 earray", tables.Filters(self.compression), expectedrows=self.N+1)                                    
            self.curr_pos=0
            self.offsets.append(np.array([self.curr_pos]).astype(np.int64)) 
            
        if self.mode=='r':
            self.tracks=self.f.root.streamlines.tracks
            self.offsets=self.f.root.streamlines.offsets
            self.track_no=len(self.offsets)-1            
            self.offs_pos=0
            
    def version(self):
        ver=self.f.root.version[:]
        return ver[0]
                         
    def write_track(self,track):      
        ''' write on track each time
        '''  
        self.tracks.append(track.astype(np.float32))
        self.curr_pos+=track.shape[0]
        self.offsets.append(np.array([self.curr_pos]).astype(np.int64))
        
    def write_tracks(self,T):
        ''' write many tracks together
        '''
        for track in T:
            self.tracks.append(track.astype(np.float32))
            self.curr_pos+=track.shape[0]
            self.offsets.append(np.array([self.curr_pos]).astype(np.int64))
                    
    def read_track(self):    
        ''' read one track each time
        ''' 
        off0,off1=self.offsets[self.offs_pos:self.offs_pos+2]        
        self.offs_pos+=1       
        return self.tracks[off0:off1]
    
    def read_tracksi(self,indices):
        ''' read tracks with specific indices
        '''                       
        T=[]
        for i in indices:
            #print(self.offsets[i:i+2])
            off0,off1=self.offsets[i:i+2]            
            T.append(self.tracks[off0:off1])        
        return T
    
    def read_tracks(self):
        ''' read the entire tractography
        '''
        I=self.offsets[:]        
        TR=self.tracks[:]
        T=[]
        for i in range(len(I)-1):
            off0,off1=I[i:i+2]
            T.append(TR[off0:off1])    
        return T
    
    def close(self):                        
        self.f.close()



if __name__ == '__main__':
    pass