/usr/share/pyshared/cfflib/util.py is in python-cfflib 2.0.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 | from zipfile import ZipFile, ZIP_DEFLATED
from glob import glob
import os.path as op
import os
import json
import pickle
# NumPy
try:
import numpy as np
except ImportError:
raise ImportError("Failed to import numpy from any known place")
# Nibabel
try:
import nibabel as ni
except ImportError:
raise ImportError("Failed to import nibabel from any known place")
# NetworkX
try:
import networkx as nx
except ImportError:
pass
#raise ImportError("Failed to import networkx from any known place")
# PyTables
try:
import tables
except ImportError:
pass
#raise ImportError("Failed to import pytables from any known place")
# setting up xnat interface as global variable
has_pyxnat = True
try:
import pyxnat
except:
has_pyxnat = False
DEBUG_msg = True
import cfflib2 as cf
xnat_interface = None
def set_xnat_connection(connection_interface = None):
""" Setup XNAT to push and pull
Parameters
----------
connection_interface : { pxnat.Interface, dict }
Set the PyXNAT interface or a dictionary
with keys server, user, password, cachedir (optional)
"""
global xnat_interface
if not has_pyxnat:
raise Exception('You need to install PyXNAT to use this functionality')
if isinstance(connection_interface, dict):
xnat_interface = pyxnat.Interface(**connection_interface)
elif isinstance(connection_interface, pyxnat.Interface):
xnat_interface = connection_interface
else:
xnat_interface = None
if DEBUG_msg:
print("Connected to XNAT Server")
def xnat_push(connectome_obj, projectid, subjectid, experimentid, overwrite = False):
""" Push all the connectome objects to the remote XNAT server.
Parameters
----------
connectome_obj : connectome object
The connectome object you want to push
projectid : string
The id of the project, has to be unique across an XNAT server
subjectid : string
The id of the subject
experimentid : string
The id of the experiment
overwrite : boolean
Overwrite remote version of the connectome object with
the connectome object contained in the local connectome container
"""
def _push_metacml(experiment_uri):
_, fname = tempfile.mkstemp()
f=open(fname, 'wb')
f.write(connectome_obj.to_xml())
f.close()
# finally update remote meta.cml
meta_uri = '%s/resources/meta/files/meta.cml' % experiment_uri
xnat_interface.select(meta_uri).insert(fname, experiments = 'xnat:imageSessionData', \
use_label=True)
if xnat_interface is None:
raise Exception('You need to setup the XNAT connection first with set_xnat_connection')
# we define the unique experimental id based on the user input
# user do not expect this composed identifiers, so we directly use
# the given parameters to construct the path
# originally, we thought that this is required because there have to be
# unique subject identifiers across the whole XNAT instance
# we seems not to be required anymore
# subj_id = '%s_%s' % (projectid, subjectid)
# exp_id = '%s_%s' % (subj_id, experimentid)
subj_id = '%s' % subjectid
exp_id = '%s_%s' % (projectid, experimentid)
experiment_uri = '/projects/%s/subjects/%s/experiments/%s' % (projectid, subj_id, exp_id)
metacml_uri = '%s/resources/meta/files/meta.cml' % experiment_uri
# does the experiment exists
if xnat_interface.select(metacml_uri).exists():
# it exists
# compare it to the local object
remote_metacml = open(xnat_interface.select(metacml_uri).get(), 'rb')
remote_connectome = cf.parseString(remote_metacml.read())
# loop over local connectome objects and check if the exists remotely
all_local_cobj = connectome_obj.get_all()
# connectome objects we need to add to the remote metacml
push_objects = []
for ele in all_local_cobj:
if DEBUG_msg:
print "Working on element %s" % ele.name
if (ele in remote_connectome.get_all() and overwrite) or \
not ele in remote_connectome.get_all():
if DEBUG_msg:
print "We push element %s" % ele.name
print "Element in remote? " + str(ele in remote_connectome.get_all())
# push connectome object to remote
cobj_uri = '%s/assessors/%s/out/resources/data/files/%s' % (
experiment_uri,
'%s_%s' % (exp_id, ele.__class__.__name__),
quote_for_xnat(ele.name) + ele.get_file_ending()
)
if DEBUG_msg:
print "uri", cobj_uri
# insert data file to xnat
xnat_interface.select(cobj_uri).insert(ele.get_abs_path(), experiments = 'xnat:imageSessionData', \
assessors = 'xnat:imageAssessorData', use_label=True)
# add element for updating metacml later on the remote
push_objects.append(ele)
else:
# we do not push
if DEBUG_msg:
print "We do nothing with element %s (already on remote and no overwrite)" % ele.name
# synchronize meta_cml
# we need to retrieve the remote connectome objects and add it to the
# local if they no not yet exists
for el in remote_connectome.get_all():
if not el in connectome_obj.get_all():
connectome_obj.add_connectome_object(el)
#for el in push_objects:
# add all push_objects to remote meta_cml
# remote_connectome.add_connectome_object(el)
# update cmetadata (overwriting remote with local)
remote_connectome.connectome_meta = connectome_obj.connectome_meta
_push_metacml(experiment_uri)
if DEBUG_msg:
print "Current local connectome container", connectome_obj.to_xml()
print "Current remote connectome container", remote_connectome.to_xml()
print "Current push objects", push_objects
else:
# create meta.cml
# loop over local connectome objects and check if the exists remotely
all_local_cobj = connectome_obj.get_all()
for ele in all_local_cobj:
print "We push element %s" % ele.name
# push connectome object to remote
cobj_uri = '%s/assessors/%s/out/resources/data/files/%s' % (
experiment_uri,
'%s_%s' % (exp_id, ele.__class__.__name__),
quote_for_xnat(ele.name)
)
# insert data file to xnat
xnat_interface.select(cobj_uri).insert(ele.get_abs_path(), experiments = 'xnat:imageSessionData', \
assessors = 'xnat:imageAssessorData', use_label=True)
# push the current connectome object to remote
_push_metacml(experiment_uri)
def xnat_pull( projectid, subjectid, experimentid, storagepath):
""" Pull the complete set of files from a XNAT project, subject and experiment id """
absstoragepath = op.abspath(storagepath)
# we define the unique experimental id based on the user input
# see push for more comments
# subj_id = '%s_%s' % (projectid, subjectid)
# exp_id = '%s_%s' % (subj_id, experimentid)
subj_id = '%s' % subjectid
exp_id = '%s_%s' % (projectid, experimentid)
experiment_uri = '/projects/%s/subjects/%s/experiments/%s' % (projectid, subj_id, exp_id)
metacml_uri = '%s/resources/meta/files/meta.cml' % experiment_uri
# download meta.cml
metacmlpath = op.join(absstoragepath, 'meta.cml')
meta_uri = '%s/resources/meta/files/meta.cml' % experiment_uri
xnat_interface.select(meta_uri).get(metacmlpath)
# parse meta.cml
f = open(metacmlpath, 'rb')
remote_connectome = cf.parseString(f.read())
f.close()
if DEBUG_msg:
print "Remote connectome", remote_connectome.to_xml()
# loop over objects and download them to pyxnat cache / or path
for ele in remote_connectome.get_all():
if DEBUG_msg:
print("Downloading connectome object")
ele.print_summary()
cobj_uri = '%s/assessors/%s/out/resources/data/files/%s' % (
experiment_uri,
'%s_%s' % (exp_id, ele.__class__.__name__),
quote_for_xnat(ele.name) + ele.get_file_ending()
)
# download file
# does file folder exist?
eleobjfolderfname = op.join(absstoragepath, ele.get_unique_relpath())
if not op.exists(op.split(eleobjfolderfname)[0]):
os.makedirs( op.split(eleobjfolderfname)[0] )
xnat_interface.select(cobj_uri).get(eleobjfolderfname)
# update current connectome container
print("=============")
print("You can load the pulled connectome file with:")
print("import cfflib as cf; mycon = cf.load('%s')" % op.join(absstoragepath, 'meta.cml'))
print("=============")
return True
def quote_for_xnat(name):
""" Quote mapping from connectome object name to a valid XNAT filename
that can be used for PyXNAT queries """
n = name.lower()
# XXX: might need update
remove_characters = [' ', '/', '\\', '[', ']', '*', '"', '?', '\'', '%', '(', ')']
for c in remove_characters:
n = n.replace(c, '_')
return n
def validate_fileformat_type(src, location, fileformat):
""" Try to evaluate whether the given file has the correct fileformat is given """
pass
def validate_filedata_type(src, location, fileformat, dtype):
""" Try to evalute whether the given file is of dtype type """
pass
def remove_file(fpath):
""" Closes and removes the fpath file from the temporary folder """
import os
os.remove(fpath)
class NotSupportedFormat(Exception):
def __init__(self, fileformat, objtype):
self.fileformat = fileformat
self.objtype = objtype
def __str__(self):
return "Loading %s:\nFile format '%s' not supported by cfflib. Use your custom loader." % (self.objtype, self.fileformat)
def save_data(obj):
objrep = str(type(obj))
if hasattr(obj, 'data'):
# it appears that there is no remove function for zip archives implemented to date
# http://bugs.python.org/issue6818
# the file was loaded, thus it exists a .tmpsrc pointing to
# its absolute path. Use this path to overwrite the file by the
# current .data data
if hasattr(obj, 'tmpsrc'):
tmpfname = obj.tmpsrc
else:
# if it has no .tmpsrc, i.e. it is not loaded from a file path
# but it has a .data set
raise Exception('Element %s cannot be saved. (It was never loaded)' % str(obj))
dname = op.dirname(tmpfname)
if not op.exists(dname):
os.makedirs()
if 'CVolume' in objrep:
print "Saving CVolume ..."
ni.save(obj.data, tmpfname)
print "Done."
elif 'CNetwork' in objrep:
print "Saving CNetwork"
if obj.fileformat == "GraphML":
# write graph to temporary file
nx.write_graphml(obj.data, tmpfname)
elif obj.fileformat == "GEXF":
nx.write_gexf(obj.data, tmpfname)
elif obj.fileformat == "NXGPickle":
nx.write_gpickle(obj.data, tmpfname)
else:
raise NotSupportedFormat("Other", str(obj))
print "Done."
elif 'CSurface' in objrep:
if obj.fileformat == "Gifti":
import nibabel.gifti as nig
nig.write(obj.data, tmpfname)
else:
raise NotSupportedFormat("Other", str(obj))
elif 'CTrack' in objrep:
if obj.fileformat == "TrackVis":
ni.trackvis.write(tmpfname, obj.data[0], obj.data[1])
else:
raise NotSupportedFormat("Other", str(obj))
elif 'CTimeserie' in objrep:
if obj.fileformat == "HDF5":
# flush the data of the buffers
obj.data.flush()
# close the file
obj.data.close()
elif obj.fileformat == "NumPy":
load = np.save(tmpfname, obj.data)
else:
raise NotSupportedFormat("Other", str(obj))
elif 'CData' in objrep:
if obj.fileformat == "NumPy":
load = np.save(tmpfname, obj.data)
elif obj.fileformat == "HDF5":
# flush the data of the buffers
obj.data.flush()
# close the file
obj.data.close()
elif obj.fileformat == "XML":
f = open(tmpfname, 'w')
f.write(obj.data)
f.close()
elif obj.fileformat == "JSON":
f = open(tmpfname, 'w')
json.dump(obj.data, f)
f.close()
elif obj.fileformat == "Pickle":
f = open(tmpfname, 'w')
pickle.dump(obj.data, f)
f.close()
elif obj.fileformat == "CSV" or obj.fileformat == "TXT":
# write as text
f = open(tmpfname, 'w')
f.write(obj.data)
f.close()
else:
raise NotSupportedFormat("Other", str(obj))
elif 'CScript' in objrep:
f = open(tmpfname, 'w')
f.write(obj.data)
f.close()
return tmpfname
else:
# assumes the .src paths are given relative to the meta.cml
# valid for iszip = True and iszip = False
# either path to the .cff or to the meta.cml
# return op.join(op.dirname(obj.parent_cfile.fname), obj.src)
print "Connectome Object is not loaded. Nothing to save."
return ''
def load_data(obj):
objrep = str(type(obj))
if 'CVolume' in objrep:
load = ni.load
elif 'CNetwork' in objrep:
if obj.fileformat == "GraphML":
load = nx.read_graphml
elif obj.fileformat == "GEXF":
# works with networkx 1.4
load = nx.read_gexf
elif obj.fileformat == "NXGPickle":
load = nx.read_gpickle
else:
raise NotSupportedFormat("Other", str(obj))
elif 'CSurface' in objrep:
if obj.fileformat == "Gifti":
import nibabel.gifti as nig
load = nig.read
else:
raise NotSupportedFormat("Other", str(obj))
elif 'CTrack' in objrep:
if obj.fileformat == "TrackVis":
load = ni.trackvis.read
else:
raise NotSupportedFormat("Other", str(obj))
elif 'CTimeserie' in objrep:
if obj.fileformat == "HDF5":
load = tables.openFile
elif obj.fileformat == "NumPy":
load = np.load
else:
raise NotSupportedFormat("Other", str(obj))
elif 'CData' in objrep:
if obj.fileformat == "NumPy":
load = np.load
elif obj.fileformat == "HDF5":
load = tables.openFile
elif obj.fileformat == "XML":
load = open
elif obj.fileformat == "JSON":
load = json.load
elif obj.fileformat == "Pickle":
load = pickle.load
elif obj.fileformat == "CSV" or obj.fileformat == "TXT":
# can use import csv on the returned object
load = open
else:
raise NotSupportedFormat("Other", str(obj))
elif 'CScript' in objrep:
load = open
elif 'CImagestack' in objrep:
if obj.parent_cfile.iszip:
_zipfile = ZipFile(obj.parent_cfile.src, 'r', ZIP_DEFLATED)
try:
namelist = _zipfile.namelist()
except: # XXX: what is the correct exception for read error?
raise RuntimeError('Can not extract %s from connectome file.' % str(obj.src) )
finally:
_zipfile.close()
import fnmatch
ret = []
for ele in namelist:
if fnmatch.fnmatch(ele, op.join(obj.src, obj.pattern)):
ret.append(ele)
return ret
else:
# returned list should be absolute path
if op.isabs(obj.src):
return sorted(glob(op.join(obj.src, obj.pattern)))
else:
path2files = op.join(op.dirname(obj.parent_cfile.fname), obj.src, obj.pattern)
return sorted(glob(path2files))
######
if obj.parent_cfile.iszip:
from tempfile import gettempdir
# create a meaningful and unique temporary path to extract data files
tmpdir = op.join(gettempdir(), obj.parent_cfile.get_unique_cff_name())
# extract src from zipfile to temp
_zipfile = ZipFile(obj.parent_cfile.src, 'r', ZIP_DEFLATED)
try:
exfile = _zipfile.extract(obj.src, tmpdir)
print "Loading file. Created temporary file: %s" % exfile
obj.tmpsrc = exfile
_zipfile.close()
retload = load(exfile)
print "Succeed."
return retload
except: # XXX: what is the correct exception for read error?
raise RuntimeError('Can not extract "%s" from connectome file using path %s. Please extract .cff and load meta.cml directly.' % (str(obj.name), str(obj.src)) )
return None
else:
if hasattr(obj, 'tmpsrc'):
# we have an absolute path
print "Load object: %s" % obj.tmpsrc
obj.tmpsrc = obj.tmpsrc
retload = load(obj.tmpsrc)
print "Succeed."
return retload
else:
# otherwise, we need to join the meta.cml path with the current relative path
path2file = op.join(op.dirname(obj.parent_cfile.fname), obj.src)
print "Load object: %s" % path2file
obj.tmpsrc = path2file
retload = load(path2file)
print "Succeed."
return retload
def unify(t, n):
""" Unify type and name """
n = n.lower()
n = n.replace(' ', '_')
return '%s/%s' % (t, n)
import urllib2
def download(url, fileName=None):
def getFileName(url,openUrl):
if 'Content-Disposition' in openUrl.info():
# If the response has Content-Disposition, try to get filename from it
cd = dict(map(
lambda x: x.strip().split('=') if '=' in x else (x.strip(),''),
openUrl.info().split(';')))
if 'filename' in cd:
filename = cd['filename'].strip("\"'")
if filename: return filename
# if no filename was found above, parse it out of the final URL.
return basename(urlsplit(openUrl.url)[2])
r = urllib2.urlopen(urllib2.Request(url))
try:
fileName = fileName or getFileName(url,r)
with open(fileName, 'wb') as f:
shutil.copyfileobj(r,f)
finally:
r.close()
def group_by_tagkey(cobj_list, tagkey, cobj_type = None, exclude_values = None):
""" Specifying the connectome object type and metadata key, a
dictionary is returned keyed by the values of the given metadata
key.
Parameter
---------
cobj_list : list of connectome objects
This list is filtered by the tagging key
tagkey : string
The metadata tag key you want to use for grouping
cobj_type : string
If you want to confine your result to a particular connectome
object type such as 'CNetwork', 'CVolume' etc.
exclude_values : list of string
If you want to discard particular metadata values
in the returned dictionary.
Notes
-----
This function is helpful to retrieve groups of connectome
objects for further analysis, e.g. statistical comparison.
The metadata works as a kind of "intersubject" grouping
criteria. For example you can have a metadata key "sex" with
values M, F and unknown. You can exclude the unknown value
by setting exclude_values = ['unknown'].
If the metadata key does not exists for the connectome
object, just skip this object.
"""
rdict = {}
for cob in cobj_list:
if cobj_type is None or cobj_type in cob.__class__:
mdi = cob.get_metadata_as_dict()
if not mdi is None and tagkey in mdi.keys():
if rdict.has_key(mdi[tagkey]):
rdict[mdi[tagkey]].append(cob)
else:
rdict[mdi[tagkey]] = [cob]
# eventually, remove not desired values
if not exclude_values is None:
for k in exclude_values:
if rdict.has_key(k):
del rdict[k]
return rdict
|