/usr/share/pyshared/brian/utils/dynamicarray.py is in python-brian 1.4.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 | from numpy import *
import gc
__all__ = ['DynamicArray', 'DynamicArray1D']
def getslices(shape):
return tuple(slice(0, x) for x in shape)
class DynamicArray(object):
'''
An N-dimensional dynamic array class
The array can be resized in any dimension, and the class will handle
allocating a new block of data and copying when necessary.
.. warning::
The data will NOT be contiguous for >1D arrays. To ensure this, you will
either need to use 1D arrays, or to copy the data, or use the shrink
method with the current size (although note that in both cases you
negate the memory and efficiency benefits of the dynamic array).
Initialisation arguments:
``shape``, ``dtype``
The shape and dtype of the array to initialise, as in Numpy. For 1D
arrays, shape can be a single int, for ND arrays it should be a tuple.
``factor``
The resizing factor (see notes below). Larger values tend to lead to
more wasted memory, but more computationally efficient code.
``use_numpy_resize``, ``refcheck``
Normally, when you resize the array it creates a new array and copies
the data. Sometimes, it is possible to resize an array without a copy,
and if this option is set it will attempt to do this. However, this can
cause memory problems if you are not careful so the option is off by
default. You need to ensure that you do not create slices of the array
so that no references to the memory exist other than the main array
object. If you are sure you know what you're doing, you can switch this
reference check off. Note that resizing in this way is only done if you
resize in the first dimension.
The array is initialised with zeros. The data is stored in the attribute
``data`` which is a Numpy array.
**Methods**
.. automethod:: resize
.. automethod:: shrink
Some numpy methods are implemented and can work directly on the array object,
including ``len(arr)``, ``arr[...]`` and ``arr[...]=...``. In other cases,
use the ``data`` attribute.
**Usage example**
::
x = DynamicArray((2, 3), dtype=int)
x[:] = 1
x.resize((3, 3))
x[:] += 1
x.resize((3, 4))
x[:] += 1
x.resize((4, 4))
x[:] += 1
x.data[:] = x.data**2
print x.data
This should give the output::
[[16 16 16 4]
[16 16 16 4]
[ 9 9 9 4]
[ 1 1 1 1]]
**Notes**
The dynamic array returns a ``data`` attribute which is a view on the larger
``_data`` attribute. When a resize operation is performed, and a specific
dimension is enlarged beyond the size in the ``_data`` attribute, the size
is increased to the larger of ``cursize*factor`` and ``newsize``. This
ensures that the amortized cost of increasing the size of the array is O(1).
'''
def __init__(self, shape, dtype=float, factor=2,
use_numpy_resize=False, refcheck=True):
if isinstance(shape, int):
shape = (shape,)
self._data = zeros(shape, dtype=dtype)
self.data = self._data
self.dtype = dtype
self.shape = self._data.shape
self.factor = factor
self.use_numpy_resize = use_numpy_resize
self.refcheck = refcheck
def resize(self, newshape):
'''
Resizes the data to the new shape, which can be a different size to the
current data, but should have the same rank, i.e. same number of
dimensions.
'''
if isscalar(newshape):
newshape = (newshape,)
datashapearr = array(self._data.shape)
shapearr = array(self.shape)
newshapearr = array(newshape)
if (shapearr==newshapearr).all():
return
resizedimensions = newshapearr>datashapearr
if resizedimensions.any():
# resize of the data is needed
minnewshapearr = datashapearr.copy()
dimstoinc = minnewshapearr[resizedimensions]
incdims = array(dimstoinc*self.factor, dtype=int)
newdims = maximum(incdims, dimstoinc+1)
minnewshapearr[resizedimensions] = newdims
newshapearr = maximum(newshapearr, minnewshapearr)
do_resize = False
if self.use_numpy_resize and self._data.flags['C_CONTIGUOUS']:
if sum(resizedimensions)==resizedimensions[0]:
do_resize = True
if do_resize:
self.data = None
self._data.resize(tuple(newshapearr), refcheck=self.refcheck)
else:
newdata = zeros(tuple(newshapearr), dtype=self.dtype)
slices = getslices(self._data.shape)
newdata[slices] = self._data
self._data = newdata
self.data = self._data[getslices(newshape)]
self.shape = self.data.shape
def shrink(self, newshape):
'''
Reduces the data to the given shape, which should be smaller than the
current shape. :meth:`resize` can also be used with smaller values, but
it will not shrink the allocated memory, whereas :meth:`shrink` will
reallocate the memory. This method should only be used infrequently, as
if it is used frequently it will negate the computational efficiency
benefits of the DynamicArray.
'''
if isinstance(newshape, int):
newshape = (newshape,)
shapearr = array(self.shape)
newshapearr = array(newshape)
if (newshapearr<=shapearr).all():
newdata = zeros(newshapearr, dtype=self.dtype)
newdata[:] = self._data[getslices(newshapearr)]
self._data = newdata
self.shape = tuple(newshapearr)
self.data = self._data
def __getitem__(self, item):
return self.data.__getitem__(item)
def __getslice__(self, start, end):
return self.data.__getslice__(start, end)
def __setitem__(self, item, val):
self.data.__setitem__(item, val)
def __setslice__(self, start, end, val):
self.data.__setslice__(start, end, val)
def __len__(self):
return len(self.data)
def __str__(self):
return self.data.__str__()
def __repr__(self):
return self.data.__repr__()
class DynamicArray1D(DynamicArray):
'''
Version of :class:`DynamicArray` with specialised ``resize`` method designed
to be more efficient.
'''
def resize(self, newshape):
shape, = self.shape # we work with int shapes only
if newshape<=shape:
return
datashape, = self._data.shape
if newshape>datashape:
newdatashape = max(newshape, int(shape*self.factor)+1)
if self.use_numpy_resize and self._data.flags['C_CONTIGUOUS']:
self.data = None
self._data.resize(newdatashape, refcheck=self.refcheck)
else:
newdata = zeros(newdatashape, dtype=self.dtype)
newdata[:shape] = self.data
self._data = newdata
self.data = self._data[:newshape]
self.shape = (newshape,)
if __name__=='__main__':
if 1:
x = DynamicArray1D(2, use_numpy_resize=True)
x[0] = 1
x[1] = 2
print x
x.resize(3)
print x, x._data
x.resize(4)
print x, x._data
if 0:
x = DynamicArray((2, 2), use_numpy_resize=True)
x[0, 0] = 0
x[0, 1] = 1
x[1, 0] = 2
x[1, 1] = 3
print x
x.resize((3, 2))
print x
if 0:
import time, gc
# speed comparison between numpy resize and not numpy resize
max_size = 400*1024*1024/8 # 1GB array
repeats = 5
factor = 1.1
collect = False
def dotiming(**kwds):
tottime = 0
for _ in xrange(repeats):
sz = 1
x = DynamicArray(sz, dtype=float, factor=factor, **kwds)
start = time.time()
while sz<max_size:
sz = int(sz*factor)+1
x.resize(sz)
if collect:
gc.collect()
tottime += time.time()-start
return tottime/repeats
print 'numpy resize', dotiming(use_numpy_resize=True)
print 'orig', dotiming()
if 0:
x = DynamicArray(3, dtype=int)
x[:] = [1, 2, 3]
print x
x.resize(5)
print x
x.shrink(4)
print x
if 0:
x = DynamicArray((2, 3), dtype=int)
x[:] = 1
x.resize((3, 3))
x[:] += 1
x.resize((3, 4))
x[:] += 1
x.resize((4, 4))
x[:] += 1
x.data[:] = x.data**2
print x.data
if 0:
def doprint():
print x.data.shape, x._data.shape
print x.data
print x._data
print
x = DynamicArray((2, 3))
x[:] = 1
doprint()
x.resize((2, 3))
doprint()
x.resize((3, 3))
x[:] += 1
doprint()
x.resize((3, 4))
x[:] += 1
doprint()
x.resize((4, 4))
x[:] += 1
doprint()
x.resize((9, 7))
x[:] += 1
doprint()
x.resize((4, 4))
x[:] += 1
doprint()
x.shrink((4, 2))
x[:] += 1
doprint()
|