/usr/share/pyshared/brian/tools/taskfarm.py is in python-brian 1.4.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 | from datamanager import DataManager
import multiprocessing
from Queue import Empty as QueueEmpty
import Tkinter
from brian.utils.progressreporting import make_text_report
import inspect
import time
import os
from numpy import ndarray, zeros
__all__ = ['run_tasks']
# This is the default task class used if the user provides only a function
class FunctionTask(object):
def __init__(self, func):
self.func = func
def __call__(self, *args, **kwds):
# If the function has a 'report' argument, we pass it the reporter
# function that will have been passed in kwds (see task_compute)
fc = self.func.func_code
if 'report' in fc.co_varnames[:fc.co_argcount] or fc.co_flags&8:
return self.func(*args, **kwds)
else:
return self.func(*args)
def run_tasks(dataman, task, items, gui=True, poolsize=0,
initargs=None, initkwds=None, verbose=None,
numitems=None):
'''
Run a series of tasks using multiple CPUs on a single computer.
Initialised with arguments:
``dataman``
The :class:`~brian.tools.datamanager.DataManager` object used to store
the results in, see below.
``task``
The task function or class (see below).
``items``
A sequence (e.g. list or iterator) of arguments to be passed to the
task.
``gui=True``
Whether or not to use a Tkinter based GUI to show progress and terminate
the task run.
``poolsize=0``
The number of CPUs to use. If the value is 0, use all available CPUs,
if it is -1 use all but one CPU, etc.
``initargs``, ``initkwds``
If ``task`` is a class, these are the initialisation arguments and
keywords for the class.
``verbose=None``
Specify True or False to print out every progress message (defaults to
False if the GUI is used, or True if not).
``numitems=None``
For iterables (rather than fixed length sequences), if you specify the
number of items, an estimate of the time remaining will be given.
The task (defined by a function or class, see below) will be called on each
item in ``items``, and the results saved to ``dataman``. Results are stored
in the format ``(key, val)`` where ``key`` is a unique but meaningless
identifier. Results can be retrieved using ``dataman.values()`` or (for
large data sets that should be iterated over) ``dataman.itervalues()``.
The task can either be a function or a class. If it is a function, it will
be called for each item in ``items``. If the items are tuples, the function
will be called with those tuples as arguments (e.g. if the item is
``(1,2,3)`` the function will be called as ``task(1, 2, 3)``). If the task
is a class, it can have an ``__init__`` method that is called once for
each process (each CPU) at the beginning of the task run. If the ``__init__``
method has a ``process_number`` argument, it will be passed an integer value
from 0 to ``numprocesses-1`` giving the number of the process (note, this is
not the process ID). The class should
define a ``__call__`` method that behaves the same as above for ``task``
being a function. In both cases (function or class), if the arguments
include a keyword ``report`` then it will be passed a value that can be
passed as the ``report`` keyword in Brian's :func:`run` function to give
feedback on the simulation as it runs. A ``task`` function can also set
``self.taskname`` as a string that will be displayed on the GUI to give
additional information.
.. warning::
On Windows, make sure that :func:`run_tasks` is only called from
within a block such as::
if __name__=='__main__':
run_tasks(...)
Otherwise, the program will go into a recursive loop.
Note that this class only allows you to run tasks on a single computer, to
distribute work over multiple computers, we suggest using
`Playdoh <http://code.google.com/p/playdoh/>`__.
'''
# User can provide task as a class or a function, if its a function we
# we use the default FunctionTask
if not inspect.isclass(task):
f = task
initargs = (task,)
task = FunctionTask
else:
f = task.__call__
fc = f.func_code
if 'report' in fc.co_varnames[:fc.co_argcount] or fc.co_flags&8:
will_report = True
else:
will_report = False
if numitems is None and isinstance(items, (list, tuple, ndarray)):
numitems = len(items)
# This will be used to provide process safe access to the data manager
# (so that multiple processes do not attempt to write to the session at
# the same time)
session = dataman.locking_computer_session()
if poolsize<=0:
numprocesses = poolsize+multiprocessing.cpu_count()
elif poolsize>0:
numprocesses = poolsize
manager = multiprocessing.Manager()
# We have to send the process number to the initializer via this silly
# queue because of a limitation of multiprocessing
process_number_queue = manager.Queue()
for n in range(numprocesses):
process_number_queue.put(n)
# This will be used to send messages about the status of the run, i.e.
# percentage complete
message_queue = manager.Queue()
if initargs is None:
initargs = ()
if initkwds is None:
initkwds = {}
pool = multiprocessing.Pool(processes=numprocesses,
initializer=pool_initializer,
initargs=(process_number_queue, message_queue,
dataman, session,
task, initargs, initkwds))
results = pool.imap_unordered(task_compute, items)
# We use this to map process IDs to task number, so that we can show the
# information on the GUI in a consistent fashion
pid_to_id = dict((pid, i) for i, pid in enumerate([p.pid for p in pool._pool]))
start = time.time()
stoprunningsim = [False]
def terminate_sim():
# We acquire the datamanager session lock so that if a process is in the
# middle of writing data, it won't be terminated until its finished,
# meaning we can safely terminate the process without worrying about
# data loss.
session.acquire()
pool.terminate()
session.release()
stoprunningsim[0] = True
if gui:
if verbose is None:
verbose = False
controller = GuiTaskController(numprocesses, terminate_sim,
verbose=verbose, will_report=will_report)
else:
if verbose is None:
verbose = True
controller = TextTaskController(numprocesses, terminate_sim, verbose=verbose)
for i in range(numprocesses):
controller.update_process(i, 0, 0, 'No task information')
i = 0
controller.update_overall(0, numitems)
def empty_message_queue():
while not message_queue.empty():
try:
pid, taskname, elapsed, complete = message_queue.get_nowait()
controller.update_process(pid_to_id[pid], elapsed, complete, taskname)
except QueueEmpty:
break
controller.update()
while True:
try:
# This waits 0.1s for a new result, and otherwise raises a
# TimeoutError that allows the GUI to update the percentage
# complete
nextresult = results.next(0.1)
empty_message_queue()
i = i+1
elapsed = time.time()-start
complete = 0.0
controller.update_overall(i, numitems)
except StopIteration:
terminate_sim()
print 'Finished.'
break
except (KeyboardInterrupt, SystemExit):
terminate_sim()
print 'Terminated task processes'
raise
except multiprocessing.TimeoutError:
empty_message_queue()
if stoprunningsim[0]:
print 'Terminated task processes'
break
controller.destroy()
# We store these values as global values, which are initialised by
# pool_initializer on each process
task_object = None
task_dataman = None
task_session = None
task_message_queue = None
def pool_initializer(process_number_queue, message_queue, dataman, session,
task, initargs, initkwds):
global task_object, task_dataman, task_session, task_message_queue
n = process_number_queue.get()
init_method = task.__init__
fc = init_method.func_code
# Checks if there is a process_number argument explicitly given in the
# __init__ method of the task class, the co_flags&8 checks i there is a
# **kwds parameter in the definition
if 'process_number' in fc.co_varnames[:fc.co_argcount] or fc.co_flags&8:
initkwds['process_number'] = n
task_object = task(*initargs, **initkwds)
task_dataman = dataman
task_session = session
task_message_queue = message_queue
def task_reporter(elapsed, complete):
# If the task class defines a task name, we can display it with the
# percentage complete
if hasattr(task_object, 'taskname'):
taskname = task_object.taskname
else:
taskname = 'No task information'
# This queue is used by the main loop in run_tasks
task_message_queue.put((os.getpid(), taskname, elapsed, complete))
def task_compute(args):
if not isinstance(args, tuple):
args = (args,)
# We check if the task function has a report argument, and if it does we
# pass it task_reporter so that it can integrate with the GUI
kwds = {}
fc = task_object.__call__.func_code
if 'report' in fc.co_varnames[:fc.co_argcount] or fc.co_flags&8:
kwds['report'] = task_reporter
result = task_object(*args, **kwds)
# Save the results, with a unique key, to the locking session of the dataman
task_session[task_dataman.make_unique_key()] = result
class TaskController(object):
def __init__(self, processes, terminator, verbose=True):
self.verbose = verbose
self.completion = zeros(processes)
self.numitems, self.numdone = None, 0
self.start_time = time.time()
def update_process(self, i, elapsed, complete, msg):
self.completion[i] = complete%1.0
if self.verbose:
print 'Process '+str(i)+': '+make_text_report(elapsed, complete)+': '+msg
_, msg = self.get_overall_completion()
print msg
def get_overall_completion(self):
complete = 0.0
numitems, numdone = self.numitems, self.numdone
elapsed = time.time()-self.start_time
if numitems is not None:
complete = (numdone+sum(self.completion))/numitems
txt = 'Overall, '+str(numdone)+' done'
if numitems is not None:
txt += ' of '+str(numitems)+': '+make_text_report(elapsed, complete)
return complete, txt
def update_overall(self, numdone, numitems):
self.numdone = numdone
self.numitems = numitems
def recompute_overall(self):
pass
def update(self):
pass
def destroy(self):
pass
class TextTaskController(TaskController):
def update_overall(self, numdone, numitems):
TaskController.update_overall(self, numdone, numitems)
_, msg = self.get_overall_completion()
print msg
# task control GUI
class GuiTaskController(Tkinter.Tk, TaskController):
def __init__(self, processes, terminator, width=600, verbose=False,
will_report=True):
Tkinter.Tk.__init__(self, None)
TaskController.__init__(self, processes, terminator, verbose=verbose)
self.parent = None
self.grid()
button = Tkinter.Button(self, text='Terminate task',
command=terminator)
button.grid(column=0, row=0)
self.pb_width = width
self.progressbars = []
numbars = 1
self.will_report = will_report
if will_report:
numbars += processes
for i in xrange(numbars):
can = Tkinter.Canvas(self, width=width, height=30)
can.grid(column=0, row=1+i)
can.create_rectangle(0, 0, width, 30, fill='#aaaaaa')
if i<numbars-1:
col = '#ffaaaa'
else:
col = '#aaaaff'
r = can.create_rectangle(0, 0, 0, 30, fill=col, width=0)
t = can.create_text(width/2, 15, text='')
self.progressbars.append((can, r, t))
self.title('Task control')
def update_process(self, i, elapsed, complete, msg):
TaskController.update_process(self, i, elapsed, complete, msg)
if self.will_report:
can, r, t = self.progressbars[i]
can.itemconfigure(t, text='Process '+str(i)+': '+make_text_report(elapsed, complete)+': '+msg)
can.coords(r, 0, 0, int(self.pb_width*complete), 30)
self.recompute_overall()
def update_overall(self, numdone, numitems):
TaskController.update_overall(self, numdone, numitems)
self.recompute_overall()
def recompute_overall(self):
complete, msg = TaskController.get_overall_completion(self)
numitems = self.numitems
can, r, t = self.progressbars[-1]
can.itemconfigure(t, text=msg)
if numitems is not None:
can.coords(r, 0, 0, int(self.pb_width*complete), 30)
self.update()
|