This file is indexed.

/usr/share/pyshared/brian/synapses/synapses.py is in python-brian 1.4.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
'''
The Synapses class - see BEP-21
'''
import re
import warnings
from operator import isSequenceType

import numpy as np
from numpy.random import binomial
from random import sample
from scipy import rand, randn

from brian.inspection import get_identifiers, namespace
from brian.log import log_debug, log_warn
from brian.neurongroup import NeuronGroup
from brian.optimiser import AffineFunction, symbolic_eval
from brian.stdunits import ms
from brian.synapses.spikequeue import SpikeQueue
from brian.synapses.synaptic_equations import SynapticEquations
from brian.synapses.synapticvariable import (SynapticDelayVariable, 
                                             SynapticVariable, slice_to_array)
from brian.utils.documentation import flattened_docstring
from brian.utils.dynamicarray import DynamicArray, DynamicArray1D 

try:
    import sympy
    use_sympy = True
except:
    warnings.warn('sympy not installed: some features in Synapses will not be available')
    use_sympy = False

__all__ = ['Synapses','invert_array']

class Synapses(NeuronGroup): # This way we inherit a lot of useful stuff
    '''Set of synapses between two neuron groups
    
    Initialised with arguments:
    
    ``source``
        The source :class:`NeuronGroup`.
    ``target=None``
        The target :class:`NeuronGroup`. By default, target=source.
    ``model=None``
        The equations that defined the synaptic variables, as an Equations object or a string.
        The syntax is the same as for a :class:`NeuronGroup`.
    ``pre=None``
        The code executed when presynaptic spikes arrive at the synapses.
        There can be multiple presynaptic codes, passed as a list or tuple of strings.
    ``post=None``
        The code executed when postsynaptic spikes arrive at the synapses.
    ``max_delay=0*ms``
        The maximum pre and postsynaptic delay. This is only useful if the delays can change
        during the simulation.
    ``level=0``
        See :class:`Equations` for details.
    ``clock=None``
        The clock for updating synaptic state variables according to ``model``.
        Currently, this must be identical to both the source and target clocks.
    ``compile=False``
        Whether or not to attempt to compile the differential equation
        solvers (into Python code). Typically, for best performance, both ``compile``
        and ``freeze`` should be set to ``True`` for nonlinear differential equations.
    ``freeze=False``
        If True, parameters are replaced by their values at the time
        of initialization.
    ``method=None``
        If not None, the integration method is forced. Possible values are
        linear, nonlinear, Euler, exponential_Euler (overrides implicit and order
        keywords).
    ``unit_checking=True``
        Set to ``False`` to bypass unit-checking.
    ``order=1``
        The order to use for nonlinear differential equation solvers.
        TODO: more details.
    ``implicit=False``
        Whether to use an implicit method for solving the differential
        equations. TODO: more details.
    ``code_namespace=None``
        Namespace for the pre and post codes.
        
    **Methods**
    
    .. method:: state(var)

        Returns the vector of values for state
        variable ``var``, with length the number of synapses. The
        vector is an instance of class :class:`SynapticVariable`.
        
    .. method:: synapse_index(i)

        Returns the synapse indexes correspond to i, which can be a tuple or a slice.
        If i is a tuple (m,n), m and n can be an integer, an array, a slice or a subgroup.
    
    The following usages are also possible for a Synapses object ``S``:
    
    ``len(S)``
        Returns the number of synapses in ``S``.
        
    Attributes:
    
    ``delay``
        The presynaptic delays for all synapses (synapse->delay). If there are multiple
        presynaptic delays (multiple pre codes), this is a list.
    ``delay_pre``
        Same as ``delay``.
    ``delay_post``
        The postsynaptic delays for all synapses (synapse->delay post).
    ``lastupdate``
        The time of last update of all synapses (synapse->last update). This
        only exists if there are dynamic synaptic variables.
    
    Internal attributes:
    
    ``source``
        The source neuron group.
    ``target``
        The target neuron group.
    ``_S``
        The state matrix (a 2D dynamical array with values of synaptic variables).
        At run time, it is transformed into a static 2D array (with compress()).
    ``presynaptic``
        The (dynamic) array of presynaptic neuron indexes for all synapses (synapse->i).
    ``postsynaptic``
        The array of postsynaptic neuron indexes for all synapses (synapse->j).
    ``synapses_pre``
        A list of (dynamic) arrays giving the set of synapse indexes for each presynaptic neuron i
        (i->synapses)
    ``synapses_post``
        A list of (dynamic) arrays giving the set of synapse indexes for each postsynaptic neuron j
        (j->synapses)
    ``queues``
        List of SpikeQueues for pre and postsynaptic spikes.
    ``codes``
        The compiled codes to be executed on pre and postsynaptic spikes.
    ``namespaces``
        The namespaces for the pre and postsynaptic codes.
    '''
    def __init__(self, source, target = None, model = None, pre = None, post = None,
             max_delay = 0*ms,
             level = 0,
             clock = None, code_namespace=None,
             unit_checking = True, method = None, freeze = False, implicit = False, order = 1): # model (state updater) related
        
        target=target or source # default is target=source

        # Check clocks. For the moment we enforce the same clocks for all objects
        clock = clock or source.clock
        if source.clock!=target.clock:
            raise ValueError,"Source and target groups must have the same clock"

        if pre is None:
            pre_list=[]
        elif isSequenceType(pre) and not isinstance(pre,str): # a list of pre codes
            pre_list=pre
        else:
            pre_list=[pre]

        pre_list=[flattened_docstring(pre) for pre in pre_list]
        if post is not None:
            post=flattened_docstring(post)

        # Pre and postsynaptic indexes (synapse -> pre/post)
        self.presynaptic=DynamicArray1D(0,dtype=smallest_inttype(len(source))) # this should depend on number of neurons
        self.postsynaptic=DynamicArray1D(0,dtype=smallest_inttype(len(target))) # this should depend on number of neurons

        if not isinstance(model,SynapticEquations):
            model=SynapticEquations(model,level=level+1)
        # Insert the lastupdate variable if necessary (if it is mentioned in pre/post, or if there is event-driven code)
        expr=re.compile(r'\blastupdate\b')
        if (len(model._eventdriven)>0) or \
           any([expr.search(pre) for pre in pre_list]) or \
           (post is not None and expr.search(post) is not None):
            model+='\nlastupdate : second\n'
            pre_list=[pre+'\nlastupdate=t\n' for pre in pre_list]
            if post is not None:
                post=post+'\nlastupdate=t\n'
        
        # Identify pre and post variables in the model string
        # They are identified by _pre and _post suffixes
        # or no suffix for postsynaptic variables
        ids=set()
        for RHS in model._string.itervalues():
            ids.update(get_identifiers(RHS))
        pre_ids = [id[:-4] for id in ids if id[-4:]=='_pre']
        post_ids = [id[:-5] for id in ids if id[-5:]=='_post']
        post_vars = [var for var in source.var_index if isinstance(var,str)] # postsynaptic variables
        post_ids2 = list(ids.intersection(set(post_vars))) # post variables without the _post suffix

        # remember whether our equations refer to any variables in the pre- or
        # postsynaptic group. This is important for the state-updater, e.g. the
        # equations can no longer be solved as linear equations.
        model.refers_others = (len(pre_ids) + len(post_ids) + len(post_ids2) > 0)

        # Insert static equations for pre and post variables
        S=self
        for name in pre_ids:
            model.add_eq(name+'_pre', 'S.source.'+name+'[S.presynaptic[:]]', source.unit(name),
                         global_namespace={'S':S})

        for name in post_ids:
            model.add_eq(name+'_post', 'S.target.'+name+'[S.postsynaptic[:]]', target.unit(name),
                         global_namespace={'S':S})
        for name in post_ids2: # we have to change the name of the variable to avoid problems with equation processing
            if name not in model._string: # check that it is not already defined
                model.add_eq(name, 'S.target.state_(__'+name+')[S.postsynaptic[:]]', target.unit(name),
                             global_namespace={'S':S,'__'+name:name})

        self.source=source
        self.target=target
        
        NeuronGroup.__init__(self, 0,
                             model=model, clock=clock, level=level+1,
                             unit_checking=unit_checking, method=method,
                             freeze=freeze, implicit=implicit, order=order)
        
        # Dynamical delays
        if "delay" in self.var_index: # if there is a "delay" variable specified in the model eqns
            self.has_variable_delays = True # remember it 
            log_warn('brian.synapses', 'Variable delays (presynaptic) detected '
                     '-- note that this feature is still experimental') # tell the user
        else:
            self.has_variable_delays = False

        '''
        At this point we have:
        * a state matrix _S with all variables
        * units, state dictionary with each value being a row of _S + the static equations
        * subgroups of synapses
        * link_var (i.e. we can link two synapses objects)
        * __len__
        * __setattr__: we can write S.w=array of values
        * var_index is a dictionary from names to row index in _S
        * num_states()
        
        Things we have that we don't want:
        * LS structure (but it will not be filled since the object does not spike)
        * (from Group) __getattr_ needs to be rewritten
        * a complete state updater, but we need to extract parameters and event-driven parts
        * The state matrix is not dynamic
        
        Things we may need to add:
        * _pre and _post suffixes
        '''       


        self._iscompressed=False # True if compress() has already been called
        
        # Look for event-driven code in the differential equations
        if use_sympy:
            eqs=self._eqs # an Equations object
            #vars=eqs._diffeq_names_nonzero # Dynamic variables
            vars=eqs._eventdriven.keys()
            var_set=set(vars)
            for var,RHS in eqs._eventdriven.iteritems():
                ids=get_identifiers(RHS)
                if len(set(list(ids)+[var]).intersection(var_set))==1:
                    # no external dynamic variable
                    # Now we test if it is a linear equation
                    _namespace=dict.fromkeys(ids,1.) # there is a possibility of problems here (division by zero)
                    # plus units problems? (maybe not since these are identifiers too)
                    # another option is to use random numbers, but that doesn't solve all problems
                    _namespace[var]=AffineFunction()
                    try:
                        eval(RHS,eqs._namespace[var],_namespace)
                    except: # not linear
                        raise TypeError,"Cannot turn equation for "+var+" into event-driven code"
                    z=symbolic_eval(RHS)
                    symbol_var=sympy.Symbol(var)
                    symbol_t=sympy.Symbol('t')-sympy.Symbol('lastupdate')
                    b=z.subs(symbol_var,0)
                    a=sympy.simplify(z.subs(symbol_var,1)-b)
                    if a==0:
                        expr=symbol_var+b*symbol_t
                    else:
                        expr=-b/a+sympy.exp(a*symbol_t)*(symbol_var+b/a)
                    expr=var+'='+str(expr)
                    # Replace pre and post code
                    # N.B.: the differential equations are kept, we will probably want to remove them!
                    pre_list=[expr+'\n'+pre for pre in pre_list]
                    if post is not None:
                        post=expr+'\n'+post
                else:
                    raise TypeError,"Cannot turn equation for "+var+" into event-driven code"
        elif len(self._eqs._eventdriven)>0:
            raise TypeError,"The Sympy package must be installed to produce event-driven code"

        if len(self._eqs._diffeq_names_nonzero)==0:
            self._state_updater=None
        
        # Set last spike to -infinity
        if 'lastupdate' in self.var_index:
            self.lastupdate=-1e6

        # _S is turned to a dynamic array - OK this is probably not good! we may lose references at this point
        S=self._S
        self._S=DynamicArray(S.shape)
        self._S[:]=S

        # Pre and postsynaptic delays (synapse -> delay_pre/delay_post)
        self._delay_pre=[DynamicArray1D(len(self),dtype=np.int16) for _ in pre_list] # max 32767 delays
        self._delay_post=DynamicArray1D(len(self),dtype=np.int16) # Actually only useful if there is a post code!
        
        # Pre and postsynaptic synapses (i->synapse indexes)
        max_synapses=2147483647 # it could be explicitly reduced by a keyword

        # We use a loop instead of *, otherwise only 1 dynamic array is created
        self.synapses_pre=[DynamicArray1D(0,dtype=smallest_inttype(max_synapses)) for _ in range(len(self.source))]
        self.synapses_post=[DynamicArray1D(0,dtype=smallest_inttype(max_synapses)) for _ in range(len(self.target))]

        # Code generation
        self._binomial = lambda n,p:np.random.binomial(np.array(n,dtype=int),p)

        self.contained_objects = []
        self.codes=[]
        self.namespaces=[]
        self.queues=[]
        for i,pre in enumerate(pre_list):
            code,_namespace=self.generate_code(pre,level+1,code_namespace=code_namespace)
            self.codes.append(code)
            self.namespaces.append(_namespace)
            
            if self.has_variable_delays:
                _precompute_offsets = False
            else:
                _precompute_offsets = True
            self.queues.append(SpikeQueue(self.source, self.synapses_pre, self._delay_pre[i], max_delay = max_delay, precompute_offsets = _precompute_offsets))
            
        
        if post is not None:
            code,_namespace=self.generate_code(post,level+1,direct=True,code_namespace=code_namespace)
            self.codes.append(code)
            self.namespaces.append(_namespace)
            self.queues.append(SpikeQueue(self.target, self.synapses_post, self._delay_post, max_delay = max_delay))

        self.queues_namespaces_codes = zip(self.queues,
                                           self.namespaces,
                                           self.codes)

        self.contained_objects+=self.queues
      
    def generate_code(self,code,level,direct=False,code_namespace=None):
        '''
        Generates pre and post code.
        
        ``code''
            The code as a string.
            
        ``level''
            The namespace level in which the code is executed.
        
        ``direct=False''
            If True, the code is generated assuming that
            postsynaptic variables are not modified. This makes the
            code faster.
            
        ``code_namespace''
            Additional namespace (highest priority)
        
        TODO:
        * include static variables (substitution)
        * have a list of variable names
        '''
        # Handle multi-line pre, post equations and multi-statement equations separated by ;
        # (this should probably be factored)
        if '\n' in code:
            code = flattened_docstring(code)
        elif ';' in code:
            code = '\n'.join([line.strip() for line in code.split(';')])
        
        # Create namespaces
        _namespace = namespace(code, level = level + 1)
        if code_namespace is not None:
            _namespace.update(code_namespace)
        _namespace['target'] = self.target # maybe we could save one indirection here
        _namespace['unique'] = np.unique
        _namespace['nonzero'] = np.nonzero
        _namespace['empty'] = np.empty
        _namespace['logical_not'] = np.logical_not
        _namespace['not_equal'] = np.not_equal
        _namespace['take'] = np.take
        _namespace['extract'] = np.extract
        _namespace['add'] = np.add
        _namespace['hstack'] = np.hstack

        code = re.sub(r'\b' + 'rand\(\)', 'rand(n)', code)
        code = re.sub(r'\b' + 'randn\(\)', 'randn(n)', code)

        # Generate the code
        def update_code(code, indices, postinds):
            res = code
            # given the synapse indices, write the update code,
            # this is here because in the code we generate we need to write this twice (because of the multiple presyn spikes for the same postsyn neuron problem)
                       
            # Replace synaptic variables by their value
            for var in self.var_index: # static variables are not included here
                if isinstance(var, str):
                    res = re.sub(r'\b' + var + r'\b', var + '['+indices+']', res) # synaptic variable, indexed by the synapse number
 
            # Replace postsynaptic variables by their value
            for postsyn_var in self.target.var_index: # static variables are not included here
                if isinstance(postsyn_var, str):
                    #res = re.sub(r'\b' + postsyn_var + r'_post\b', 'target.' + postsyn_var + '['+postinds+']', res)# postsyn variable, indexed by post syn neuron numbers
                    #res = re.sub(r'\b' + postsyn_var + r'\b', 'target.' + postsyn_var + '['+postinds+']', res)# postsyn variable, indexed by post syn neuron numbers
                    res = re.sub(r'\b' + postsyn_var + r'_post\b', '_target_' + postsyn_var + '['+postinds+']', res)# postsyn variable, indexed by post syn neuron numbers
                    res = re.sub(r'\b' + postsyn_var + r'\b', '_target_' + postsyn_var + '['+postinds+']', res)# postsyn variable, indexed by post syn neuron numbers
                    _namespace['_target_' + postsyn_var] = self.target.state_(postsyn_var)
            
            # Replace presynaptic variables by their value
            for presyn_var in self.source.var_index: # static variables are not included here
                if isinstance(presyn_var, str):
                    #res = re.sub(r'\b' + presyn_var + r'_pre\b', 'source.' + presyn_var + '[_pre['+indices+']]', res)# postsyn variable, indexed by post syn neuron numbers
                    res = re.sub(r'\b' + presyn_var + r'_pre\b', '_source_' + presyn_var + '[_pre['+indices+']]', res)# postsyn variable, indexed by post syn neuron numbers
                    _namespace['_source_' + presyn_var] = self.source.state_(presyn_var)
 
            # Replace n by number of synapses being updated
            res = re.sub(r'\bn\b','len('+indices+')', res)
 
            return res
 
        if direct: # direct update code, not caring about multiple accesses to postsynaptic variables
            code_str = '_post_neurons = _post[_synapses]\n'+update_code(code, '_synapses', '_post_neurons') + "\n"            
        else:
            algo = 3
            if algo==0:
                ## Old version using numpy's unique()
                code_str = "_post_neurons = _post[_synapses]\n" # not necessary to do a copy because _synapses is not a slice
                code_str += "_u, _i = unique(_post_neurons, return_index = True)\n"
                #code_str += update_code(code, '_synapses[_i]', '_u') + "\n"
                code_str += update_code(code, '_synapses[_i]', '_post[_synapses[_i]]') + "\n"
                code_str += "if len(_u) < len(_post_neurons):\n"
                code_str += "    _post_neurons[_i] = -1\n"
                code_str += "    while (len(_u) < len(_post_neurons)) & (_post_neurons>-1).any():\n" # !! the any() is time consuming (len(u)>=1??)
                #code_str += "    while (len(_u) < len(_post_neurons)) & (len(_u)>1):\n" # !! the any() is time consuming (len(u)>=1??)
                code_str += "        _u, _i = unique(_post_neurons, return_index = True)\n"
                code_str += indent(update_code(code, '_synapses[_i[1:]]', '_post[_synapses[_i[1:]]]'),2) + "\n"
                code_str += "        _post_neurons[_i[1:]] = -1 \n"
            elif algo==1:
                code_str = "_post_neurons = _post[_synapses]\n" # not necessary to do a copy because _synapses is not a slice
                code_str += "_perm = _post_neurons.argsort()\n"
                code_str += "_aux = _post_neurons[_perm]\n"
                code_str += "_flag = empty(len(_aux) + 1, dtype = bool)\n"
                code_str += "_flag[0] = _flag[-1] = True\n"
                code_str += "not_equal(_aux[1:], _aux[:-1], _flag[1:-1])\n"
                code_str += "_F = _flag.nonzero()[0][:-1]\n"
                code_str += "logical_not(_flag, _flag)\n"
                code_str += "while len(_F):\n"
                code_str += "    _u = _aux[_F]\n"
                code_str += "    _i = _perm[_F]\n"
                code_str += indent(update_code(code, '_synapses[_i]', '_u'), 1) + "\n"
                code_str += "    _F += 1\n"
                code_str += "    _F = _F[_flag[_F]]\n"
            elif algo==2:
                code_str = '''
                _post_neurons = _post.data.take(_synapses)
                _perm = _post_neurons.argsort()
                _aux = _post_neurons.take(_perm)
                _flag = empty(len(_aux)+1, dtype=bool)
                _flag[0] = _flag[-1] = 1
                not_equal(_aux[1:], _aux[:-1], _flag[1:-1])
                if 0:#_flag.sum()==len(_aux)+1:
                %(code1)s
                else:
                    _F = _flag.nonzero()[0][:-1]
                    logical_not(_flag, _flag)
                    while len(_F):
                        _u = _aux.take(_F)
                        _i = _perm.take(_F)
                %(code2)s
                        _F += 1
                        _F = extract(_flag.take(_F), _F)
                '''
                code_str = flattened_docstring(code_str) % {'code1': indent(update_code(code, '_synapses','_post_neurons'), 1),
                                                            'code2': indent(update_code(code, '_synapses[_i]', '_u'), 2)}
            elif algo==3:
                code_str = '''
                _post_neurons = _post.data.take(_synapses)
                _perm = _post_neurons.argsort()
                _aux = _post_neurons.take(_perm)
                _flag = empty(len(_aux)+1, dtype=bool)
                _flag[0] = _flag[-1] = 1
                not_equal(_aux[1:], _aux[:-1], _flag[1:-1])
                _F = _flag.nonzero()[0][:-1]
                logical_not(_flag, _flag)
                while len(_F):
                    _u = _aux.take(_F)
                    _i = _perm.take(_F)
                %(code)s
                    _F += 1
                    _F = extract(_flag.take(_F), _F)
                '''
                code_str = flattened_docstring(code_str) % {'code': indent(update_code(code, '_synapses[_i]', '_u'), 1)}
            elif algo==4:
                code_str = '''
                _post_neurons = _post[_synapses]
                _perm = _post_neurons.argsort()
                _aux = _post_neurons[_perm]
                _flag = empty(len(_aux)+1, dtype=bool)
                _flag[0] = _flag[-1] = 1
                not_equal(_aux[1:], _aux[:-1], _flag[1:-1])
                _F = _flag.nonzero()[0][:-1]
                logical_not(_flag, _flag)
                while len(_F):
                    _u = _aux[_F]
                    _i = _perm[_F]
                %(code)s
                    _F += 1
                    _F = _F[_flag[_F]]
                '''
                code_str = flattened_docstring(code_str) % {'code': indent(update_code(code, '_synapses[_i]', '_u'), 1)}
#        print code_str
            
        log_debug('brian.synapses', '\nCODE:\n'+code_str)
        
        # Compile
        compiled_code = compile(code_str, "Synaptic code", "exec")
        
        _namespace['_original_code_string'] = code_str
        
        return compiled_code,_namespace

    def __setitem__(self, key, value):
        '''
        Creates new synapses.
        Synapse indexes are created such that synapses with the same presynaptic neuron
        and delay have contiguous indexes.
        
        Caution:
        1) there is no deletion
        2) synapses are added, not replaced (e.g. S[1,2]=True;S[1,2]=True creates 2 synapses)
        
        TODO:
        * S[:,:]=array (boolean or int)
        '''
        if self._iscompressed:
            raise AttributeError,"Synapses cannot be added after they have been run"
        
        if not isinstance(key, tuple): # we should check that number of elements is 2 as well
            raise AttributeError,'Synapses behave as 2-D objects'
        pre,post=key # pre and post indexes (can be slices)
        
        '''
        Each of these sets of statements creates:
        * synapses_pre: a mapping from presynaptic neuron to synapse indexes
        * synapses_post: same
        * presynaptic: an array of presynaptic neuron indexes (synapse->pre)
        * postsynaptic: same
        '''
        pre_slice = self.presynaptic_indexes(pre)
        post_slice = self.postsynaptic_indexes(post)
        # Bound checks
        if pre_slice[-1]>=len(self.source):
            raise ValueError('Presynaptic index %d greater than number of '\
                             'presynaptic neurons (%d)'
                             % (pre_slice[-1], len(self.source)))
        if post_slice[-1]>=len(self.target):
            raise ValueError('Postsynaptic index %d greater than number of '\
                             'postsynaptic neurons (%d)'
                             % (post_slice[-1], len(self.target)))

        if isinstance(value,float):
            self.connect_random(pre,post,value)
            return
        elif isinstance(value, (int, bool)): # ex. S[1,7]=True
            # Simple case, either one or multiple synapses between different neurons
            if value is False:
                raise ValueError('Synapses cannot be deleted')
            elif value is True:
                nsynapses = 1
            else:
                nsynapses = value

            postsynaptic,presynaptic=np.meshgrid(post_slice,pre_slice) # synapse -> pre, synapse -> post
            # Flatten
            presynaptic.shape=(presynaptic.size,)
            postsynaptic.shape=(postsynaptic.size,)
            # pre,post -> synapse index, relative to last synapse
            # (that's a complex vectorised one!)
            synapses_pre=np.arange(len(presynaptic)).reshape((len(pre_slice),len(post_slice)))
            synapses_post=np.ones((len(post_slice),1),dtype=int)*np.arange(0,len(presynaptic),len(post_slice))+\
                          np.arange(len(post_slice)).reshape((len(post_slice),1))
            # Repeat
            if nsynapses>1:
                synapses_pre=np.hstack([synapses_pre+k*len(presynaptic) for k in range(nsynapses)]) # could be vectorised
                synapses_post=np.hstack([synapses_post+k*len(presynaptic) for k in range(nsynapses)]) # could be vectorised
                presynaptic=np.tile(presynaptic,nsynapses)
                postsynaptic=np.tile(postsynaptic,nsynapses)
            # Make sure the type is correct
            synapses_pre=np.array(synapses_pre,dtype=self.synapses_pre[0].dtype)
            synapses_post=np.array(synapses_post,dtype=self.synapses_post[0].dtype)
            # Turn into dictionaries
            synapses_pre=dict(zip(pre_slice,synapses_pre))
            synapses_post=dict(zip(post_slice,synapses_post))
        elif isinstance(value, str): # string code assignment
            # For subgroups, origin of i and j are shifted to subgroup origin
            if isinstance(pre,NeuronGroup):
                pre_shift=pre_slice[0]
            else:
                pre_shift=0
            if isinstance(post,NeuronGroup):
                post_shift=post_slice[0]
            else:
                post_shift=0
            code = re.sub(r'\b' + 'rand\(\)', 'rand(n)', value) # replacing rand()
            code = re.sub(r'\b' + 'randn\(\)', 'randn(n)', code) # replacing randn()
            _namespace = namespace(value, level=1)
            _namespace.update({'j' : post_slice-post_shift,
                               'n' : len(post_slice),
                               'rand': np.random.rand,
                               'randn': np.random.randn})
#            try: # Vectorise over all indexes: not faster! 
#                post,pre=np.meshgrid(post_slice-post_shift,pre_slice-pre_shift)
#                pre=pre.flatten()
#                post=post.flatten()
#                _namespace['i']=array(pre,dtype=self.presynaptic.dtype)
#                _namespace['j']=array(post,dtype=self.postsynaptic.dtype)
#                _namespace['n']=len(post)
#                result = eval(code, _namespace) # mask on synapses
#                if result.dtype==float: # random number generation
#                    result=rand(len(post))<result
#                indexes=result.nonzero()[0]
#                presynaptic=pre[indexes]
#                postsynaptic=post[indexes]
#                dtype=self.synapses_pre[0].dtype
#                synapses_pre={}
#                nsynapses=0
#                for i in pre_slice:
#                    n=sum(result[i*len(post_slice):(i+1)*len(post_slice)])
#                    synapses_pre[i]=array(nsynapses+np.arange(n),dtype=dtype)
#                    nsynapses+=n
#            except MemoryError: # If not possible, vectorise over postsynaptic indexes
#                log_info("synapses","Construction of synapses cannot be fully vectorised (too big)")
            #del pre
            #del post
            #_namespace['i']=None
            #_namespace['j']=post_slice-post_shift
            #_namespace['n']=len(post_slice)
            synapses_pre={}
            nsynapses=0
            presynaptic,postsynaptic=[],[]
            for i in pre_slice:
                _namespace['i']=i-pre_shift # maybe an array rather than a scalar?
                result = eval(code, _namespace) # mask on synapses
                if result.dtype==float: # random number generation
                    result=rand(len(post_slice))<result
                indexes=result.nonzero()[0]
                n=len(indexes)
                synapses_pre[i]=np.array(nsynapses+np.arange(n),dtype=self.synapses_pre[0].dtype)
                presynaptic.append(i*np.ones(n,dtype=int))
                postsynaptic.append(post_slice[indexes])
                nsynapses+=n
                
            # Make sure the type is correct
            presynaptic=np.array(np.hstack(presynaptic),dtype=self.presynaptic.dtype)
            postsynaptic=np.array(np.hstack(postsynaptic),dtype=self.postsynaptic.dtype)
            synapses_post=None
        elif isinstance(value, np.ndarray):
            raise NotImplementedError
            nsynapses = np.array(value, dtype = int) 
            
        # Now create the synapses
        self.create_synapses(presynaptic,postsynaptic,synapses_pre,synapses_post)
    
    def create_synapses(self, presynaptic, postsynaptic,
                        synapses_pre = None, synapses_post = None):
        '''
        Create new synapses.
        * synapses_pre: a mapping from presynaptic neuron to synapse indexes
        * synapses_post: same
        * presynaptic: an array of presynaptic neuron indexes (synapse->pre)
        * postsynaptic: same
        
        If synapses_pre or synapses_post is not specified, it is calculated from
        presynaptic or postsynaptic.       
        '''
        # Resize dynamic arrays and push new values
        newsynapses=len(presynaptic) # number of new synapses
        nvars,nsynapses_all=self._S.shape
        
        self._S.resize((nvars,nsynapses_all+newsynapses))
        self.presynaptic.resize(nsynapses_all+newsynapses)
        self.presynaptic[nsynapses_all:]=presynaptic
        self.postsynaptic.resize(nsynapses_all+newsynapses)
        self.postsynaptic[nsynapses_all:]=postsynaptic

        for delay_pre in self._delay_pre:
            delay_pre.resize(nsynapses_all+newsynapses)

        self._delay_post.resize(nsynapses_all+newsynapses)
        
        if synapses_pre is None:
            synapses_pre=invert_array(presynaptic,dtype=self.synapses_post[0].dtype)
        for i,synapses in synapses_pre.iteritems():
            nsynapses=len(self.synapses_pre[i])
            self.synapses_pre[i].resize(nsynapses+len(synapses))
            self.synapses_pre[i][nsynapses:]=synapses+nsynapses_all # synapse indexes are shifted
        if synapses_post is None:
            synapses_post=invert_array(postsynaptic,dtype=self.synapses_post[0].dtype)
        for j,synapses in synapses_post.iteritems():
            nsynapses=len(self.synapses_post[j])
            self.synapses_post[j].resize(nsynapses+len(synapses))
            self.synapses_post[j][nsynapses:]=synapses+nsynapses_all
    
    def __getattr__(self, name):
        if name == 'var_index':
            raise AttributeError
        if not hasattr(self, 'var_index'):
            raise AttributeError
        if (name=='delay_pre') or (name=='delay'): # default: delay is presynaptic delay
            if name == 'delay' and self.has_variable_delays: # handle variable delays
                return SynapticVariable(self.state(name), self, name) # stored as floats for update (i.e not SynapticDelayVar)
            if len(self._delay_pre) > 1:
                return [SynapticDelayVariable(delay_pre,self,name) for delay_pre in self._delay_pre]
            else:
                return SynapticDelayVariable(self._delay_pre[0],self,name)
        elif name=='delay_post':
            return SynapticDelayVariable(self._delay_post,self,name)
        try:
            x=self.state(name)
            return SynapticVariable(x,self,name)
        except KeyError:
            return NeuronGroup.__getattr__(self,name)
        
    def __setattr__(self, name, val):
        if ((name=='delay_pre') or (name=='delay') or (name=='delay_post')) and (not self.has_variable_delays):
            # if only constant delays, then delays are held in the _delay_pre (list of array) and _delay_post (array) data
            if name=='delay_post':
                SynapticDelayVariable(self._delay_post,self,name)[:]=val
            else: #i.e (name=='delay_pre') or (name=='delay'):
                if len(self._delay_pre)==1:
                    SynapticDelayVariable(self._delay_pre[0], self, name)[:]=val
                else:
                    raise NotImplementedError,"Cannot assign multiple delays at the same time"
        else: # copied from Group
            origname = name
            if len(name) and name[-1] == '_':
                origname = name[:-1]
            if not hasattr(self, 'var_index') or (name not in self.var_index and origname not in self.var_index):
                object.__setattr__(self, name, val)
            else:
                if name in self.var_index:
                    x=self.state(name)
                else:
                    x=self.state_(origname)
                SynapticVariable(x,self,name).__setitem__(slice(None,None,None),val,level=2)
        
    def update(self): # this is called at every timestep
        '''
        Updates the synaptic variables.
        
        TODO:
        * Deal with static variables
        '''
        if self._state_updater is not None:
            self._state_updater(self)

        for queue, _namespace, code in zip(self.queues, self.namespaces, self.codes):
            synaptic_events = queue.peek()
            if len(synaptic_events):
                # Build the namespace - Here we don't consider static equations
                _namespace['_synapses'] = synaptic_events
                _namespace['t'] = self.clock._t
                exec code in _namespace
            queue.next()
            if self.has_variable_delays:
                queue._update_delays(_namespace['delay'])#self._S[self.var_index['delay'],:])
            
    def connect_one_to_one(self,pre=None,post=None):
        '''
        Connects each neuron in the ``pre'' group to each corresponding one
        in the ``post'' group.
        '''
        if pre is None:
            pre = self.source
        if post is None:
            post = self.target
        pre, post = self.presynaptic_indexes(pre), self.postsynaptic_indexes(post)
        if len(pre) != len(post):
            raise TypeError,"Source and target groups do not have the same size"
            
        for i,j in zip(pre,post):
            self[i,j]=True
    
    def connect_random(self,pre=None,post=None,sparseness=None):
        '''
        Creates random connections between pre and post neurons
        (default: all neurons).
        This is equivalent to::
        
            S[pre,post]=sparseness
        
        ``pre=None''
            The set of presynaptic neurons, defined as an integer, an array, a slice or a subgroup.

        ``post=None''
            The set of presynaptic neurons, defined as an integer, an array, a slice or a subgroup.
        
        ``sparseness=None''
            The probability of connection of a pair of pre/post-synaptic neurons.
        '''
        if pre is None:
            pre=self.source
        if post is None:
            post=self.target
        pre,post=self.presynaptic_indexes(pre),self.postsynaptic_indexes(post)
        m=len(post)
        synapses_pre={}
        nsynapses=0
        presynaptic,postsynaptic=[],[]
        for i in pre: # vectorised over post neurons
            k = binomial(m, sparseness, 1)[0] # number of postsynaptic neurons
            synapses_pre[i]=nsynapses+np.arange(k)
            presynaptic.append(i*np.ones(k,dtype=int))
            # Not significantly faster to generate all random numbers in one pass
            # N.B.: the sample method is implemented in Python and it is not in Scipy
            postneurons = sample(xrange(m), k)
            #postneurons.sort() # sorting is unnecessary
            postsynaptic.append(post[postneurons])
            nsynapses+=k
        presynaptic=np.hstack(presynaptic)
        postsynaptic=np.hstack(postsynaptic)
        synapses_post=None # we ask for automatic calculation of (post->synapse)
        # this is more or less given by unique
        self.create_synapses(presynaptic,postsynaptic,synapses_pre,synapses_post)
        
    def presynaptic_indexes(self,x):
        '''
        Returns the array of presynaptic neuron indexes corresponding to x,
        which can be a integer, an array, a slice or a subgroup.
        '''
        return neuron_indexes(x,self.source)

    def postsynaptic_indexes(self,x):
        '''
        Returns the array of postsynaptic neuron indexes corresponding to x,
        which can be a integer, an array, a slice or a subgroup.
        '''
        return neuron_indexes(x,self.target)
    
    def compress(self):
        '''
        * Checks that the object is not empty.
        * Make the state array non-dynamical (important for the state updater).
        * Updates namespaces of pre and post code.
        '''
        if hasattr(self, '_iscompressed') and self._iscompressed:
            return
        self._iscompressed = True
        # Check that the object is not empty
        if len(self)==0:
            warnings.warn("Empty Synapses object")
        self._S=self._S[:,:]
        
        # Update namespaces of pre/post code        
        for _namespace in self.namespaces:
            for var,i in self.var_index.iteritems(): # no static variables here
                if isinstance(var, str):
                    _namespace[var]=self._S[i,:]
            for var,i in self.source.var_index.iteritems():
                if isinstance(var, str):
                    _namespace[var+'_pre']=self.source._S[i,:]
            for var,i in self.target.var_index.iteritems():
                if isinstance(var, str):
                    _namespace[var+'_post']=self.target._S[i,:]
                    _namespace[var]=self.target._S[i,:]
            _namespace['_pre']=self.presynaptic
            _namespace['_post']=self.postsynaptic
            _namespace['np']=np
            _namespace['binomial']=self._binomial
            _namespace['rand']=rand
            _namespace['randn']=randn
            _namespace['zeros']=np.zeros
            _namespace['sum']=sum
            
        self._iscompressed=True

    def synapse_index(self,i):
        '''
        Returns the synapse indexes correspond to i, which is a tuple.
        If i is a tuple (m,n), m and n can be an integer, an array, a slice or a subgroup.

        Searching synapse indexes for synapse (i,j) is implemented as follows.
        If i or j is an integer or a slice, they are converted to a boolean test.
        Then the following is executed:
        1) get indexes of target synapses of presynaptic neuron(s) i
        2) test whether postsynaptic neurons of these synapses correspond to j
        3) return synapses that passed the test
        or the symmetrical operations (depending on what is possible and faster).
        
        Otherwise, the following is executed:
        1) get indexes of target synapses of presynaptic neuron(s) i
        2) get indexes of source synapses of postsynaptic neuron(s) j
        3) calculate the intersection
        
        This will generally be ok for vectorised searches, but not for searching
        single elements (i,j). In this case, one might want to use
        a dictionary (i,j)->synapse index (not implemented). This is fast
        but 1) cannot be vectorised, 2) is very memory expensive.
        '''
        if not isinstance(i,tuple): # we assume it is directly a synapse index
            return i
        if len(i)==2:
            i,j=i
            # We use boolean tests if possible (faster)
            if isinstance(i,slice) or isinstance(i,int):
                test_i=slice_to_test(i)
            else:
                test_i=None
            if isinstance(j,slice) or isinstance(j,int):
                test_j=slice_to_test(j)
            else:
                test_j=None
            i=neuron_indexes(i,self.source)
            j=neuron_indexes(j,self.target)
            synapsetype=self.synapses_pre[0].dtype
            
            if (test_i is None) and (test_j is None): # no speed-up is possible
                synapses_pre=np.array(np.hstack([self.synapses_pre[k] for k in i]),dtype=synapsetype)
                synapses_post=np.array(np.hstack([self.synapses_post[k] for k in j]),dtype=synapsetype)
                return np.intersect1d(synapses_pre, synapses_post,assume_unique=True)
            elif ((len(i)<len(j)) and (test_j is not None)) or (test_i is None): # test synapses of presynaptic neurons
                synapses_pre=np.array(np.hstack([self.synapses_pre[k] for k in i]),dtype=synapsetype)
                return synapses_pre[test_j(self.postsynaptic[synapses_pre])]
            else: # test synapses of postsynaptic neurons
                synapses_post=np.array(np.hstack([self.synapses_post[k] for k in j]),dtype=synapsetype)
                return synapses_post[test_i(self.presynaptic[synapses_post])]
        elif len(i)==3: # 3rd coordinate is synapse number
            if np.isscalar(i[0]) and np.isscalar(i[1]):
                return self.synapse_index(i[:2])[i[2]]
            else:
                raise NotImplementedError, "The first two coordinates must be integers"
        return i
    
    def save_connectivity(self, fn):
        '''
        Saves the connectivity matrices and delays so that they can be reloaded afterwards. 
        
        Notice that this only saves the connectivity, not the current state of the variables in the Synapses class. In fact, it is completely decoupled from the pre/post synaptic groups, and the models of the Synapses object.
        
        Example: Say we want to save the connectivity of Synapses, and some other state of the network, say ``my_state''. We would simply do:
        
        array_to_save = synapses.my_state[:,:]
        synapses.save_connectivity('./somefile')

        new_synapses = Synapses(newgroup0, newgroup0, model = newmodel, pre = newpre, ...)
        new_synapses.load_connectivity('./somefile')
        new_synapses.my_state[:,:] = array_that_was_saved_and_then_reloaded
        
        Note: You have to deal with dynamical delays as you would with any other variable.
        '''
        if isinstance(fn, str):
            f = open(fn, 'w')
        else:
            f = fn
            
        nvars, nsynapses_all = self._S.shape
        
        # prepare to save the connectivity itself
        savez_args = { 
            'presynaptic' : self.presynaptic,
            'postsynaptic' : self.postsynaptic,
            '_delay_pre' : self._delay_pre,
            '_delay_post' : self._delay_post
        }
        

        np.savez(f, **savez_args)
        return 1

    def load_connectivity(self, fn):
        '''
        Loads a connectivity saved with the ``save'' option, this reloads the synapses as they were saved, between thge same neuron (indices), and with the same delays. See the documentation for save_connectivity.
        '''
        if isinstance(fn, str):
            f = open(fn, 'r')
        else:
            f = fn

        data = np.load(f)

        self.create_synapses(data['presynaptic'],
                             data['postsynaptic'])
        self._delay_pre = data['_delay_pre']
        self._delay_post = data['_delay_post']

    def __repr__(self):
        return 'Synapses object with '+ str(len(self))+ ' synapses'

def smallest_inttype(N):
    '''
    Returns the smallest signed integer dtype that can store N indexes.
    '''
    if N<=127:
        return np.int8
    elif N<=32727:
        return np.int16
    elif N<=2147483647:
        return np.int32
    else:
        return np.int64

def indent(s,n=1):
    '''
    Inserts an indentation (4 spaces) or n before the multiline string s.
    '''
    return re.compile(r'^',re.M).sub('    '*n,s)

def invert_array(x,dtype=int):
    '''
    Returns a dictionary y of N int arrays such that:
    y[i]=set of j such that x[j]==i
    '''
    if len(x) == 0:
        return {}

    I = np.argsort(x) # ,kind='mergesort') # uncomment for a stable sort
    xs = x[I]
    # This below does the same as unique, except the indices point to first time
    # each number appears in the array 
    # See also code for unique (doesn't use diff, not sure which one is faster)
    indices=np.hstack(([0],np.where(np.diff(xs)!=0)[0]+1)) # or concatenate?
    u=xs[indices]
    y={}
    for j,i in enumerate(u[:-1]):
        y[i]=np.array(I[indices[j]:indices[j+1]],dtype=dtype)
    y[u[-1]]=np.array(I[indices[-1]:],dtype=dtype)
    return y


def neuron_indexes(x,P):
    '''
    Returns the array of neuron indexes corresponding to x,
    which can be a integer, an array, a slice or a subgroup.
    P is the neuron group.
    '''
    if isinstance(x,NeuronGroup): # it should be checked that x is actually a subgroup of P
        i0=x._origin - P._origin # offset of the subgroup x in P
        return np.arange(i0,i0+len(x))
    else:
        return slice_to_array(x,N=len(P))      


def slice_to_test(x):
    '''
    Returns a testing function corresponding to whether an index is in slice x.
    x can also be an int.
    '''
    if isinstance(x,int):
        return lambda y:y==x
    elif isinstance(x,slice):
        start,stop,step=x.start,x.stop,x.step
        if start is None:
            start=0
        if step is None:
            step=1
        if stop is None:
            return lambda y:(y>=start) & ((y-start)%step==0)
        else:
            return lambda y:(y>=start) & (y<stop) & ((y-start)%step==0)

if __name__=='__main__':
    #log_level_debug()
    print invert_array(np.array([7,5,2,2,3,5]))