/usr/share/pyshared/brian/synapses/synapses.py is in python-brian 1.4.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 | '''
The Synapses class - see BEP-21
'''
import re
import warnings
from operator import isSequenceType
import numpy as np
from numpy.random import binomial
from random import sample
from scipy import rand, randn
from brian.inspection import get_identifiers, namespace
from brian.log import log_debug, log_warn
from brian.neurongroup import NeuronGroup
from brian.optimiser import AffineFunction, symbolic_eval
from brian.stdunits import ms
from brian.synapses.spikequeue import SpikeQueue
from brian.synapses.synaptic_equations import SynapticEquations
from brian.synapses.synapticvariable import (SynapticDelayVariable,
SynapticVariable, slice_to_array)
from brian.utils.documentation import flattened_docstring
from brian.utils.dynamicarray import DynamicArray, DynamicArray1D
try:
import sympy
use_sympy = True
except:
warnings.warn('sympy not installed: some features in Synapses will not be available')
use_sympy = False
__all__ = ['Synapses','invert_array']
class Synapses(NeuronGroup): # This way we inherit a lot of useful stuff
'''Set of synapses between two neuron groups
Initialised with arguments:
``source``
The source :class:`NeuronGroup`.
``target=None``
The target :class:`NeuronGroup`. By default, target=source.
``model=None``
The equations that defined the synaptic variables, as an Equations object or a string.
The syntax is the same as for a :class:`NeuronGroup`.
``pre=None``
The code executed when presynaptic spikes arrive at the synapses.
There can be multiple presynaptic codes, passed as a list or tuple of strings.
``post=None``
The code executed when postsynaptic spikes arrive at the synapses.
``max_delay=0*ms``
The maximum pre and postsynaptic delay. This is only useful if the delays can change
during the simulation.
``level=0``
See :class:`Equations` for details.
``clock=None``
The clock for updating synaptic state variables according to ``model``.
Currently, this must be identical to both the source and target clocks.
``compile=False``
Whether or not to attempt to compile the differential equation
solvers (into Python code). Typically, for best performance, both ``compile``
and ``freeze`` should be set to ``True`` for nonlinear differential equations.
``freeze=False``
If True, parameters are replaced by their values at the time
of initialization.
``method=None``
If not None, the integration method is forced. Possible values are
linear, nonlinear, Euler, exponential_Euler (overrides implicit and order
keywords).
``unit_checking=True``
Set to ``False`` to bypass unit-checking.
``order=1``
The order to use for nonlinear differential equation solvers.
TODO: more details.
``implicit=False``
Whether to use an implicit method for solving the differential
equations. TODO: more details.
``code_namespace=None``
Namespace for the pre and post codes.
**Methods**
.. method:: state(var)
Returns the vector of values for state
variable ``var``, with length the number of synapses. The
vector is an instance of class :class:`SynapticVariable`.
.. method:: synapse_index(i)
Returns the synapse indexes correspond to i, which can be a tuple or a slice.
If i is a tuple (m,n), m and n can be an integer, an array, a slice or a subgroup.
The following usages are also possible for a Synapses object ``S``:
``len(S)``
Returns the number of synapses in ``S``.
Attributes:
``delay``
The presynaptic delays for all synapses (synapse->delay). If there are multiple
presynaptic delays (multiple pre codes), this is a list.
``delay_pre``
Same as ``delay``.
``delay_post``
The postsynaptic delays for all synapses (synapse->delay post).
``lastupdate``
The time of last update of all synapses (synapse->last update). This
only exists if there are dynamic synaptic variables.
Internal attributes:
``source``
The source neuron group.
``target``
The target neuron group.
``_S``
The state matrix (a 2D dynamical array with values of synaptic variables).
At run time, it is transformed into a static 2D array (with compress()).
``presynaptic``
The (dynamic) array of presynaptic neuron indexes for all synapses (synapse->i).
``postsynaptic``
The array of postsynaptic neuron indexes for all synapses (synapse->j).
``synapses_pre``
A list of (dynamic) arrays giving the set of synapse indexes for each presynaptic neuron i
(i->synapses)
``synapses_post``
A list of (dynamic) arrays giving the set of synapse indexes for each postsynaptic neuron j
(j->synapses)
``queues``
List of SpikeQueues for pre and postsynaptic spikes.
``codes``
The compiled codes to be executed on pre and postsynaptic spikes.
``namespaces``
The namespaces for the pre and postsynaptic codes.
'''
def __init__(self, source, target = None, model = None, pre = None, post = None,
max_delay = 0*ms,
level = 0,
clock = None, code_namespace=None,
unit_checking = True, method = None, freeze = False, implicit = False, order = 1): # model (state updater) related
target=target or source # default is target=source
# Check clocks. For the moment we enforce the same clocks for all objects
clock = clock or source.clock
if source.clock!=target.clock:
raise ValueError,"Source and target groups must have the same clock"
if pre is None:
pre_list=[]
elif isSequenceType(pre) and not isinstance(pre,str): # a list of pre codes
pre_list=pre
else:
pre_list=[pre]
pre_list=[flattened_docstring(pre) for pre in pre_list]
if post is not None:
post=flattened_docstring(post)
# Pre and postsynaptic indexes (synapse -> pre/post)
self.presynaptic=DynamicArray1D(0,dtype=smallest_inttype(len(source))) # this should depend on number of neurons
self.postsynaptic=DynamicArray1D(0,dtype=smallest_inttype(len(target))) # this should depend on number of neurons
if not isinstance(model,SynapticEquations):
model=SynapticEquations(model,level=level+1)
# Insert the lastupdate variable if necessary (if it is mentioned in pre/post, or if there is event-driven code)
expr=re.compile(r'\blastupdate\b')
if (len(model._eventdriven)>0) or \
any([expr.search(pre) for pre in pre_list]) or \
(post is not None and expr.search(post) is not None):
model+='\nlastupdate : second\n'
pre_list=[pre+'\nlastupdate=t\n' for pre in pre_list]
if post is not None:
post=post+'\nlastupdate=t\n'
# Identify pre and post variables in the model string
# They are identified by _pre and _post suffixes
# or no suffix for postsynaptic variables
ids=set()
for RHS in model._string.itervalues():
ids.update(get_identifiers(RHS))
pre_ids = [id[:-4] for id in ids if id[-4:]=='_pre']
post_ids = [id[:-5] for id in ids if id[-5:]=='_post']
post_vars = [var for var in source.var_index if isinstance(var,str)] # postsynaptic variables
post_ids2 = list(ids.intersection(set(post_vars))) # post variables without the _post suffix
# remember whether our equations refer to any variables in the pre- or
# postsynaptic group. This is important for the state-updater, e.g. the
# equations can no longer be solved as linear equations.
model.refers_others = (len(pre_ids) + len(post_ids) + len(post_ids2) > 0)
# Insert static equations for pre and post variables
S=self
for name in pre_ids:
model.add_eq(name+'_pre', 'S.source.'+name+'[S.presynaptic[:]]', source.unit(name),
global_namespace={'S':S})
for name in post_ids:
model.add_eq(name+'_post', 'S.target.'+name+'[S.postsynaptic[:]]', target.unit(name),
global_namespace={'S':S})
for name in post_ids2: # we have to change the name of the variable to avoid problems with equation processing
if name not in model._string: # check that it is not already defined
model.add_eq(name, 'S.target.state_(__'+name+')[S.postsynaptic[:]]', target.unit(name),
global_namespace={'S':S,'__'+name:name})
self.source=source
self.target=target
NeuronGroup.__init__(self, 0,
model=model, clock=clock, level=level+1,
unit_checking=unit_checking, method=method,
freeze=freeze, implicit=implicit, order=order)
# Dynamical delays
if "delay" in self.var_index: # if there is a "delay" variable specified in the model eqns
self.has_variable_delays = True # remember it
log_warn('brian.synapses', 'Variable delays (presynaptic) detected '
'-- note that this feature is still experimental') # tell the user
else:
self.has_variable_delays = False
'''
At this point we have:
* a state matrix _S with all variables
* units, state dictionary with each value being a row of _S + the static equations
* subgroups of synapses
* link_var (i.e. we can link two synapses objects)
* __len__
* __setattr__: we can write S.w=array of values
* var_index is a dictionary from names to row index in _S
* num_states()
Things we have that we don't want:
* LS structure (but it will not be filled since the object does not spike)
* (from Group) __getattr_ needs to be rewritten
* a complete state updater, but we need to extract parameters and event-driven parts
* The state matrix is not dynamic
Things we may need to add:
* _pre and _post suffixes
'''
self._iscompressed=False # True if compress() has already been called
# Look for event-driven code in the differential equations
if use_sympy:
eqs=self._eqs # an Equations object
#vars=eqs._diffeq_names_nonzero # Dynamic variables
vars=eqs._eventdriven.keys()
var_set=set(vars)
for var,RHS in eqs._eventdriven.iteritems():
ids=get_identifiers(RHS)
if len(set(list(ids)+[var]).intersection(var_set))==1:
# no external dynamic variable
# Now we test if it is a linear equation
_namespace=dict.fromkeys(ids,1.) # there is a possibility of problems here (division by zero)
# plus units problems? (maybe not since these are identifiers too)
# another option is to use random numbers, but that doesn't solve all problems
_namespace[var]=AffineFunction()
try:
eval(RHS,eqs._namespace[var],_namespace)
except: # not linear
raise TypeError,"Cannot turn equation for "+var+" into event-driven code"
z=symbolic_eval(RHS)
symbol_var=sympy.Symbol(var)
symbol_t=sympy.Symbol('t')-sympy.Symbol('lastupdate')
b=z.subs(symbol_var,0)
a=sympy.simplify(z.subs(symbol_var,1)-b)
if a==0:
expr=symbol_var+b*symbol_t
else:
expr=-b/a+sympy.exp(a*symbol_t)*(symbol_var+b/a)
expr=var+'='+str(expr)
# Replace pre and post code
# N.B.: the differential equations are kept, we will probably want to remove them!
pre_list=[expr+'\n'+pre for pre in pre_list]
if post is not None:
post=expr+'\n'+post
else:
raise TypeError,"Cannot turn equation for "+var+" into event-driven code"
elif len(self._eqs._eventdriven)>0:
raise TypeError,"The Sympy package must be installed to produce event-driven code"
if len(self._eqs._diffeq_names_nonzero)==0:
self._state_updater=None
# Set last spike to -infinity
if 'lastupdate' in self.var_index:
self.lastupdate=-1e6
# _S is turned to a dynamic array - OK this is probably not good! we may lose references at this point
S=self._S
self._S=DynamicArray(S.shape)
self._S[:]=S
# Pre and postsynaptic delays (synapse -> delay_pre/delay_post)
self._delay_pre=[DynamicArray1D(len(self),dtype=np.int16) for _ in pre_list] # max 32767 delays
self._delay_post=DynamicArray1D(len(self),dtype=np.int16) # Actually only useful if there is a post code!
# Pre and postsynaptic synapses (i->synapse indexes)
max_synapses=2147483647 # it could be explicitly reduced by a keyword
# We use a loop instead of *, otherwise only 1 dynamic array is created
self.synapses_pre=[DynamicArray1D(0,dtype=smallest_inttype(max_synapses)) for _ in range(len(self.source))]
self.synapses_post=[DynamicArray1D(0,dtype=smallest_inttype(max_synapses)) for _ in range(len(self.target))]
# Code generation
self._binomial = lambda n,p:np.random.binomial(np.array(n,dtype=int),p)
self.contained_objects = []
self.codes=[]
self.namespaces=[]
self.queues=[]
for i,pre in enumerate(pre_list):
code,_namespace=self.generate_code(pre,level+1,code_namespace=code_namespace)
self.codes.append(code)
self.namespaces.append(_namespace)
if self.has_variable_delays:
_precompute_offsets = False
else:
_precompute_offsets = True
self.queues.append(SpikeQueue(self.source, self.synapses_pre, self._delay_pre[i], max_delay = max_delay, precompute_offsets = _precompute_offsets))
if post is not None:
code,_namespace=self.generate_code(post,level+1,direct=True,code_namespace=code_namespace)
self.codes.append(code)
self.namespaces.append(_namespace)
self.queues.append(SpikeQueue(self.target, self.synapses_post, self._delay_post, max_delay = max_delay))
self.queues_namespaces_codes = zip(self.queues,
self.namespaces,
self.codes)
self.contained_objects+=self.queues
def generate_code(self,code,level,direct=False,code_namespace=None):
'''
Generates pre and post code.
``code''
The code as a string.
``level''
The namespace level in which the code is executed.
``direct=False''
If True, the code is generated assuming that
postsynaptic variables are not modified. This makes the
code faster.
``code_namespace''
Additional namespace (highest priority)
TODO:
* include static variables (substitution)
* have a list of variable names
'''
# Handle multi-line pre, post equations and multi-statement equations separated by ;
# (this should probably be factored)
if '\n' in code:
code = flattened_docstring(code)
elif ';' in code:
code = '\n'.join([line.strip() for line in code.split(';')])
# Create namespaces
_namespace = namespace(code, level = level + 1)
if code_namespace is not None:
_namespace.update(code_namespace)
_namespace['target'] = self.target # maybe we could save one indirection here
_namespace['unique'] = np.unique
_namespace['nonzero'] = np.nonzero
_namespace['empty'] = np.empty
_namespace['logical_not'] = np.logical_not
_namespace['not_equal'] = np.not_equal
_namespace['take'] = np.take
_namespace['extract'] = np.extract
_namespace['add'] = np.add
_namespace['hstack'] = np.hstack
code = re.sub(r'\b' + 'rand\(\)', 'rand(n)', code)
code = re.sub(r'\b' + 'randn\(\)', 'randn(n)', code)
# Generate the code
def update_code(code, indices, postinds):
res = code
# given the synapse indices, write the update code,
# this is here because in the code we generate we need to write this twice (because of the multiple presyn spikes for the same postsyn neuron problem)
# Replace synaptic variables by their value
for var in self.var_index: # static variables are not included here
if isinstance(var, str):
res = re.sub(r'\b' + var + r'\b', var + '['+indices+']', res) # synaptic variable, indexed by the synapse number
# Replace postsynaptic variables by their value
for postsyn_var in self.target.var_index: # static variables are not included here
if isinstance(postsyn_var, str):
#res = re.sub(r'\b' + postsyn_var + r'_post\b', 'target.' + postsyn_var + '['+postinds+']', res)# postsyn variable, indexed by post syn neuron numbers
#res = re.sub(r'\b' + postsyn_var + r'\b', 'target.' + postsyn_var + '['+postinds+']', res)# postsyn variable, indexed by post syn neuron numbers
res = re.sub(r'\b' + postsyn_var + r'_post\b', '_target_' + postsyn_var + '['+postinds+']', res)# postsyn variable, indexed by post syn neuron numbers
res = re.sub(r'\b' + postsyn_var + r'\b', '_target_' + postsyn_var + '['+postinds+']', res)# postsyn variable, indexed by post syn neuron numbers
_namespace['_target_' + postsyn_var] = self.target.state_(postsyn_var)
# Replace presynaptic variables by their value
for presyn_var in self.source.var_index: # static variables are not included here
if isinstance(presyn_var, str):
#res = re.sub(r'\b' + presyn_var + r'_pre\b', 'source.' + presyn_var + '[_pre['+indices+']]', res)# postsyn variable, indexed by post syn neuron numbers
res = re.sub(r'\b' + presyn_var + r'_pre\b', '_source_' + presyn_var + '[_pre['+indices+']]', res)# postsyn variable, indexed by post syn neuron numbers
_namespace['_source_' + presyn_var] = self.source.state_(presyn_var)
# Replace n by number of synapses being updated
res = re.sub(r'\bn\b','len('+indices+')', res)
return res
if direct: # direct update code, not caring about multiple accesses to postsynaptic variables
code_str = '_post_neurons = _post[_synapses]\n'+update_code(code, '_synapses', '_post_neurons') + "\n"
else:
algo = 3
if algo==0:
## Old version using numpy's unique()
code_str = "_post_neurons = _post[_synapses]\n" # not necessary to do a copy because _synapses is not a slice
code_str += "_u, _i = unique(_post_neurons, return_index = True)\n"
#code_str += update_code(code, '_synapses[_i]', '_u') + "\n"
code_str += update_code(code, '_synapses[_i]', '_post[_synapses[_i]]') + "\n"
code_str += "if len(_u) < len(_post_neurons):\n"
code_str += " _post_neurons[_i] = -1\n"
code_str += " while (len(_u) < len(_post_neurons)) & (_post_neurons>-1).any():\n" # !! the any() is time consuming (len(u)>=1??)
#code_str += " while (len(_u) < len(_post_neurons)) & (len(_u)>1):\n" # !! the any() is time consuming (len(u)>=1??)
code_str += " _u, _i = unique(_post_neurons, return_index = True)\n"
code_str += indent(update_code(code, '_synapses[_i[1:]]', '_post[_synapses[_i[1:]]]'),2) + "\n"
code_str += " _post_neurons[_i[1:]] = -1 \n"
elif algo==1:
code_str = "_post_neurons = _post[_synapses]\n" # not necessary to do a copy because _synapses is not a slice
code_str += "_perm = _post_neurons.argsort()\n"
code_str += "_aux = _post_neurons[_perm]\n"
code_str += "_flag = empty(len(_aux) + 1, dtype = bool)\n"
code_str += "_flag[0] = _flag[-1] = True\n"
code_str += "not_equal(_aux[1:], _aux[:-1], _flag[1:-1])\n"
code_str += "_F = _flag.nonzero()[0][:-1]\n"
code_str += "logical_not(_flag, _flag)\n"
code_str += "while len(_F):\n"
code_str += " _u = _aux[_F]\n"
code_str += " _i = _perm[_F]\n"
code_str += indent(update_code(code, '_synapses[_i]', '_u'), 1) + "\n"
code_str += " _F += 1\n"
code_str += " _F = _F[_flag[_F]]\n"
elif algo==2:
code_str = '''
_post_neurons = _post.data.take(_synapses)
_perm = _post_neurons.argsort()
_aux = _post_neurons.take(_perm)
_flag = empty(len(_aux)+1, dtype=bool)
_flag[0] = _flag[-1] = 1
not_equal(_aux[1:], _aux[:-1], _flag[1:-1])
if 0:#_flag.sum()==len(_aux)+1:
%(code1)s
else:
_F = _flag.nonzero()[0][:-1]
logical_not(_flag, _flag)
while len(_F):
_u = _aux.take(_F)
_i = _perm.take(_F)
%(code2)s
_F += 1
_F = extract(_flag.take(_F), _F)
'''
code_str = flattened_docstring(code_str) % {'code1': indent(update_code(code, '_synapses','_post_neurons'), 1),
'code2': indent(update_code(code, '_synapses[_i]', '_u'), 2)}
elif algo==3:
code_str = '''
_post_neurons = _post.data.take(_synapses)
_perm = _post_neurons.argsort()
_aux = _post_neurons.take(_perm)
_flag = empty(len(_aux)+1, dtype=bool)
_flag[0] = _flag[-1] = 1
not_equal(_aux[1:], _aux[:-1], _flag[1:-1])
_F = _flag.nonzero()[0][:-1]
logical_not(_flag, _flag)
while len(_F):
_u = _aux.take(_F)
_i = _perm.take(_F)
%(code)s
_F += 1
_F = extract(_flag.take(_F), _F)
'''
code_str = flattened_docstring(code_str) % {'code': indent(update_code(code, '_synapses[_i]', '_u'), 1)}
elif algo==4:
code_str = '''
_post_neurons = _post[_synapses]
_perm = _post_neurons.argsort()
_aux = _post_neurons[_perm]
_flag = empty(len(_aux)+1, dtype=bool)
_flag[0] = _flag[-1] = 1
not_equal(_aux[1:], _aux[:-1], _flag[1:-1])
_F = _flag.nonzero()[0][:-1]
logical_not(_flag, _flag)
while len(_F):
_u = _aux[_F]
_i = _perm[_F]
%(code)s
_F += 1
_F = _F[_flag[_F]]
'''
code_str = flattened_docstring(code_str) % {'code': indent(update_code(code, '_synapses[_i]', '_u'), 1)}
# print code_str
log_debug('brian.synapses', '\nCODE:\n'+code_str)
# Compile
compiled_code = compile(code_str, "Synaptic code", "exec")
_namespace['_original_code_string'] = code_str
return compiled_code,_namespace
def __setitem__(self, key, value):
'''
Creates new synapses.
Synapse indexes are created such that synapses with the same presynaptic neuron
and delay have contiguous indexes.
Caution:
1) there is no deletion
2) synapses are added, not replaced (e.g. S[1,2]=True;S[1,2]=True creates 2 synapses)
TODO:
* S[:,:]=array (boolean or int)
'''
if self._iscompressed:
raise AttributeError,"Synapses cannot be added after they have been run"
if not isinstance(key, tuple): # we should check that number of elements is 2 as well
raise AttributeError,'Synapses behave as 2-D objects'
pre,post=key # pre and post indexes (can be slices)
'''
Each of these sets of statements creates:
* synapses_pre: a mapping from presynaptic neuron to synapse indexes
* synapses_post: same
* presynaptic: an array of presynaptic neuron indexes (synapse->pre)
* postsynaptic: same
'''
pre_slice = self.presynaptic_indexes(pre)
post_slice = self.postsynaptic_indexes(post)
# Bound checks
if pre_slice[-1]>=len(self.source):
raise ValueError('Presynaptic index %d greater than number of '\
'presynaptic neurons (%d)'
% (pre_slice[-1], len(self.source)))
if post_slice[-1]>=len(self.target):
raise ValueError('Postsynaptic index %d greater than number of '\
'postsynaptic neurons (%d)'
% (post_slice[-1], len(self.target)))
if isinstance(value,float):
self.connect_random(pre,post,value)
return
elif isinstance(value, (int, bool)): # ex. S[1,7]=True
# Simple case, either one or multiple synapses between different neurons
if value is False:
raise ValueError('Synapses cannot be deleted')
elif value is True:
nsynapses = 1
else:
nsynapses = value
postsynaptic,presynaptic=np.meshgrid(post_slice,pre_slice) # synapse -> pre, synapse -> post
# Flatten
presynaptic.shape=(presynaptic.size,)
postsynaptic.shape=(postsynaptic.size,)
# pre,post -> synapse index, relative to last synapse
# (that's a complex vectorised one!)
synapses_pre=np.arange(len(presynaptic)).reshape((len(pre_slice),len(post_slice)))
synapses_post=np.ones((len(post_slice),1),dtype=int)*np.arange(0,len(presynaptic),len(post_slice))+\
np.arange(len(post_slice)).reshape((len(post_slice),1))
# Repeat
if nsynapses>1:
synapses_pre=np.hstack([synapses_pre+k*len(presynaptic) for k in range(nsynapses)]) # could be vectorised
synapses_post=np.hstack([synapses_post+k*len(presynaptic) for k in range(nsynapses)]) # could be vectorised
presynaptic=np.tile(presynaptic,nsynapses)
postsynaptic=np.tile(postsynaptic,nsynapses)
# Make sure the type is correct
synapses_pre=np.array(synapses_pre,dtype=self.synapses_pre[0].dtype)
synapses_post=np.array(synapses_post,dtype=self.synapses_post[0].dtype)
# Turn into dictionaries
synapses_pre=dict(zip(pre_slice,synapses_pre))
synapses_post=dict(zip(post_slice,synapses_post))
elif isinstance(value, str): # string code assignment
# For subgroups, origin of i and j are shifted to subgroup origin
if isinstance(pre,NeuronGroup):
pre_shift=pre_slice[0]
else:
pre_shift=0
if isinstance(post,NeuronGroup):
post_shift=post_slice[0]
else:
post_shift=0
code = re.sub(r'\b' + 'rand\(\)', 'rand(n)', value) # replacing rand()
code = re.sub(r'\b' + 'randn\(\)', 'randn(n)', code) # replacing randn()
_namespace = namespace(value, level=1)
_namespace.update({'j' : post_slice-post_shift,
'n' : len(post_slice),
'rand': np.random.rand,
'randn': np.random.randn})
# try: # Vectorise over all indexes: not faster!
# post,pre=np.meshgrid(post_slice-post_shift,pre_slice-pre_shift)
# pre=pre.flatten()
# post=post.flatten()
# _namespace['i']=array(pre,dtype=self.presynaptic.dtype)
# _namespace['j']=array(post,dtype=self.postsynaptic.dtype)
# _namespace['n']=len(post)
# result = eval(code, _namespace) # mask on synapses
# if result.dtype==float: # random number generation
# result=rand(len(post))<result
# indexes=result.nonzero()[0]
# presynaptic=pre[indexes]
# postsynaptic=post[indexes]
# dtype=self.synapses_pre[0].dtype
# synapses_pre={}
# nsynapses=0
# for i in pre_slice:
# n=sum(result[i*len(post_slice):(i+1)*len(post_slice)])
# synapses_pre[i]=array(nsynapses+np.arange(n),dtype=dtype)
# nsynapses+=n
# except MemoryError: # If not possible, vectorise over postsynaptic indexes
# log_info("synapses","Construction of synapses cannot be fully vectorised (too big)")
#del pre
#del post
#_namespace['i']=None
#_namespace['j']=post_slice-post_shift
#_namespace['n']=len(post_slice)
synapses_pre={}
nsynapses=0
presynaptic,postsynaptic=[],[]
for i in pre_slice:
_namespace['i']=i-pre_shift # maybe an array rather than a scalar?
result = eval(code, _namespace) # mask on synapses
if result.dtype==float: # random number generation
result=rand(len(post_slice))<result
indexes=result.nonzero()[0]
n=len(indexes)
synapses_pre[i]=np.array(nsynapses+np.arange(n),dtype=self.synapses_pre[0].dtype)
presynaptic.append(i*np.ones(n,dtype=int))
postsynaptic.append(post_slice[indexes])
nsynapses+=n
# Make sure the type is correct
presynaptic=np.array(np.hstack(presynaptic),dtype=self.presynaptic.dtype)
postsynaptic=np.array(np.hstack(postsynaptic),dtype=self.postsynaptic.dtype)
synapses_post=None
elif isinstance(value, np.ndarray):
raise NotImplementedError
nsynapses = np.array(value, dtype = int)
# Now create the synapses
self.create_synapses(presynaptic,postsynaptic,synapses_pre,synapses_post)
def create_synapses(self, presynaptic, postsynaptic,
synapses_pre = None, synapses_post = None):
'''
Create new synapses.
* synapses_pre: a mapping from presynaptic neuron to synapse indexes
* synapses_post: same
* presynaptic: an array of presynaptic neuron indexes (synapse->pre)
* postsynaptic: same
If synapses_pre or synapses_post is not specified, it is calculated from
presynaptic or postsynaptic.
'''
# Resize dynamic arrays and push new values
newsynapses=len(presynaptic) # number of new synapses
nvars,nsynapses_all=self._S.shape
self._S.resize((nvars,nsynapses_all+newsynapses))
self.presynaptic.resize(nsynapses_all+newsynapses)
self.presynaptic[nsynapses_all:]=presynaptic
self.postsynaptic.resize(nsynapses_all+newsynapses)
self.postsynaptic[nsynapses_all:]=postsynaptic
for delay_pre in self._delay_pre:
delay_pre.resize(nsynapses_all+newsynapses)
self._delay_post.resize(nsynapses_all+newsynapses)
if synapses_pre is None:
synapses_pre=invert_array(presynaptic,dtype=self.synapses_post[0].dtype)
for i,synapses in synapses_pre.iteritems():
nsynapses=len(self.synapses_pre[i])
self.synapses_pre[i].resize(nsynapses+len(synapses))
self.synapses_pre[i][nsynapses:]=synapses+nsynapses_all # synapse indexes are shifted
if synapses_post is None:
synapses_post=invert_array(postsynaptic,dtype=self.synapses_post[0].dtype)
for j,synapses in synapses_post.iteritems():
nsynapses=len(self.synapses_post[j])
self.synapses_post[j].resize(nsynapses+len(synapses))
self.synapses_post[j][nsynapses:]=synapses+nsynapses_all
def __getattr__(self, name):
if name == 'var_index':
raise AttributeError
if not hasattr(self, 'var_index'):
raise AttributeError
if (name=='delay_pre') or (name=='delay'): # default: delay is presynaptic delay
if name == 'delay' and self.has_variable_delays: # handle variable delays
return SynapticVariable(self.state(name), self, name) # stored as floats for update (i.e not SynapticDelayVar)
if len(self._delay_pre) > 1:
return [SynapticDelayVariable(delay_pre,self,name) for delay_pre in self._delay_pre]
else:
return SynapticDelayVariable(self._delay_pre[0],self,name)
elif name=='delay_post':
return SynapticDelayVariable(self._delay_post,self,name)
try:
x=self.state(name)
return SynapticVariable(x,self,name)
except KeyError:
return NeuronGroup.__getattr__(self,name)
def __setattr__(self, name, val):
if ((name=='delay_pre') or (name=='delay') or (name=='delay_post')) and (not self.has_variable_delays):
# if only constant delays, then delays are held in the _delay_pre (list of array) and _delay_post (array) data
if name=='delay_post':
SynapticDelayVariable(self._delay_post,self,name)[:]=val
else: #i.e (name=='delay_pre') or (name=='delay'):
if len(self._delay_pre)==1:
SynapticDelayVariable(self._delay_pre[0], self, name)[:]=val
else:
raise NotImplementedError,"Cannot assign multiple delays at the same time"
else: # copied from Group
origname = name
if len(name) and name[-1] == '_':
origname = name[:-1]
if not hasattr(self, 'var_index') or (name not in self.var_index and origname not in self.var_index):
object.__setattr__(self, name, val)
else:
if name in self.var_index:
x=self.state(name)
else:
x=self.state_(origname)
SynapticVariable(x,self,name).__setitem__(slice(None,None,None),val,level=2)
def update(self): # this is called at every timestep
'''
Updates the synaptic variables.
TODO:
* Deal with static variables
'''
if self._state_updater is not None:
self._state_updater(self)
for queue, _namespace, code in zip(self.queues, self.namespaces, self.codes):
synaptic_events = queue.peek()
if len(synaptic_events):
# Build the namespace - Here we don't consider static equations
_namespace['_synapses'] = synaptic_events
_namespace['t'] = self.clock._t
exec code in _namespace
queue.next()
if self.has_variable_delays:
queue._update_delays(_namespace['delay'])#self._S[self.var_index['delay'],:])
def connect_one_to_one(self,pre=None,post=None):
'''
Connects each neuron in the ``pre'' group to each corresponding one
in the ``post'' group.
'''
if pre is None:
pre = self.source
if post is None:
post = self.target
pre, post = self.presynaptic_indexes(pre), self.postsynaptic_indexes(post)
if len(pre) != len(post):
raise TypeError,"Source and target groups do not have the same size"
for i,j in zip(pre,post):
self[i,j]=True
def connect_random(self,pre=None,post=None,sparseness=None):
'''
Creates random connections between pre and post neurons
(default: all neurons).
This is equivalent to::
S[pre,post]=sparseness
``pre=None''
The set of presynaptic neurons, defined as an integer, an array, a slice or a subgroup.
``post=None''
The set of presynaptic neurons, defined as an integer, an array, a slice or a subgroup.
``sparseness=None''
The probability of connection of a pair of pre/post-synaptic neurons.
'''
if pre is None:
pre=self.source
if post is None:
post=self.target
pre,post=self.presynaptic_indexes(pre),self.postsynaptic_indexes(post)
m=len(post)
synapses_pre={}
nsynapses=0
presynaptic,postsynaptic=[],[]
for i in pre: # vectorised over post neurons
k = binomial(m, sparseness, 1)[0] # number of postsynaptic neurons
synapses_pre[i]=nsynapses+np.arange(k)
presynaptic.append(i*np.ones(k,dtype=int))
# Not significantly faster to generate all random numbers in one pass
# N.B.: the sample method is implemented in Python and it is not in Scipy
postneurons = sample(xrange(m), k)
#postneurons.sort() # sorting is unnecessary
postsynaptic.append(post[postneurons])
nsynapses+=k
presynaptic=np.hstack(presynaptic)
postsynaptic=np.hstack(postsynaptic)
synapses_post=None # we ask for automatic calculation of (post->synapse)
# this is more or less given by unique
self.create_synapses(presynaptic,postsynaptic,synapses_pre,synapses_post)
def presynaptic_indexes(self,x):
'''
Returns the array of presynaptic neuron indexes corresponding to x,
which can be a integer, an array, a slice or a subgroup.
'''
return neuron_indexes(x,self.source)
def postsynaptic_indexes(self,x):
'''
Returns the array of postsynaptic neuron indexes corresponding to x,
which can be a integer, an array, a slice or a subgroup.
'''
return neuron_indexes(x,self.target)
def compress(self):
'''
* Checks that the object is not empty.
* Make the state array non-dynamical (important for the state updater).
* Updates namespaces of pre and post code.
'''
if hasattr(self, '_iscompressed') and self._iscompressed:
return
self._iscompressed = True
# Check that the object is not empty
if len(self)==0:
warnings.warn("Empty Synapses object")
self._S=self._S[:,:]
# Update namespaces of pre/post code
for _namespace in self.namespaces:
for var,i in self.var_index.iteritems(): # no static variables here
if isinstance(var, str):
_namespace[var]=self._S[i,:]
for var,i in self.source.var_index.iteritems():
if isinstance(var, str):
_namespace[var+'_pre']=self.source._S[i,:]
for var,i in self.target.var_index.iteritems():
if isinstance(var, str):
_namespace[var+'_post']=self.target._S[i,:]
_namespace[var]=self.target._S[i,:]
_namespace['_pre']=self.presynaptic
_namespace['_post']=self.postsynaptic
_namespace['np']=np
_namespace['binomial']=self._binomial
_namespace['rand']=rand
_namespace['randn']=randn
_namespace['zeros']=np.zeros
_namespace['sum']=sum
self._iscompressed=True
def synapse_index(self,i):
'''
Returns the synapse indexes correspond to i, which is a tuple.
If i is a tuple (m,n), m and n can be an integer, an array, a slice or a subgroup.
Searching synapse indexes for synapse (i,j) is implemented as follows.
If i or j is an integer or a slice, they are converted to a boolean test.
Then the following is executed:
1) get indexes of target synapses of presynaptic neuron(s) i
2) test whether postsynaptic neurons of these synapses correspond to j
3) return synapses that passed the test
or the symmetrical operations (depending on what is possible and faster).
Otherwise, the following is executed:
1) get indexes of target synapses of presynaptic neuron(s) i
2) get indexes of source synapses of postsynaptic neuron(s) j
3) calculate the intersection
This will generally be ok for vectorised searches, but not for searching
single elements (i,j). In this case, one might want to use
a dictionary (i,j)->synapse index (not implemented). This is fast
but 1) cannot be vectorised, 2) is very memory expensive.
'''
if not isinstance(i,tuple): # we assume it is directly a synapse index
return i
if len(i)==2:
i,j=i
# We use boolean tests if possible (faster)
if isinstance(i,slice) or isinstance(i,int):
test_i=slice_to_test(i)
else:
test_i=None
if isinstance(j,slice) or isinstance(j,int):
test_j=slice_to_test(j)
else:
test_j=None
i=neuron_indexes(i,self.source)
j=neuron_indexes(j,self.target)
synapsetype=self.synapses_pre[0].dtype
if (test_i is None) and (test_j is None): # no speed-up is possible
synapses_pre=np.array(np.hstack([self.synapses_pre[k] for k in i]),dtype=synapsetype)
synapses_post=np.array(np.hstack([self.synapses_post[k] for k in j]),dtype=synapsetype)
return np.intersect1d(synapses_pre, synapses_post,assume_unique=True)
elif ((len(i)<len(j)) and (test_j is not None)) or (test_i is None): # test synapses of presynaptic neurons
synapses_pre=np.array(np.hstack([self.synapses_pre[k] for k in i]),dtype=synapsetype)
return synapses_pre[test_j(self.postsynaptic[synapses_pre])]
else: # test synapses of postsynaptic neurons
synapses_post=np.array(np.hstack([self.synapses_post[k] for k in j]),dtype=synapsetype)
return synapses_post[test_i(self.presynaptic[synapses_post])]
elif len(i)==3: # 3rd coordinate is synapse number
if np.isscalar(i[0]) and np.isscalar(i[1]):
return self.synapse_index(i[:2])[i[2]]
else:
raise NotImplementedError, "The first two coordinates must be integers"
return i
def save_connectivity(self, fn):
'''
Saves the connectivity matrices and delays so that they can be reloaded afterwards.
Notice that this only saves the connectivity, not the current state of the variables in the Synapses class. In fact, it is completely decoupled from the pre/post synaptic groups, and the models of the Synapses object.
Example: Say we want to save the connectivity of Synapses, and some other state of the network, say ``my_state''. We would simply do:
array_to_save = synapses.my_state[:,:]
synapses.save_connectivity('./somefile')
new_synapses = Synapses(newgroup0, newgroup0, model = newmodel, pre = newpre, ...)
new_synapses.load_connectivity('./somefile')
new_synapses.my_state[:,:] = array_that_was_saved_and_then_reloaded
Note: You have to deal with dynamical delays as you would with any other variable.
'''
if isinstance(fn, str):
f = open(fn, 'w')
else:
f = fn
nvars, nsynapses_all = self._S.shape
# prepare to save the connectivity itself
savez_args = {
'presynaptic' : self.presynaptic,
'postsynaptic' : self.postsynaptic,
'_delay_pre' : self._delay_pre,
'_delay_post' : self._delay_post
}
np.savez(f, **savez_args)
return 1
def load_connectivity(self, fn):
'''
Loads a connectivity saved with the ``save'' option, this reloads the synapses as they were saved, between thge same neuron (indices), and with the same delays. See the documentation for save_connectivity.
'''
if isinstance(fn, str):
f = open(fn, 'r')
else:
f = fn
data = np.load(f)
self.create_synapses(data['presynaptic'],
data['postsynaptic'])
self._delay_pre = data['_delay_pre']
self._delay_post = data['_delay_post']
def __repr__(self):
return 'Synapses object with '+ str(len(self))+ ' synapses'
def smallest_inttype(N):
'''
Returns the smallest signed integer dtype that can store N indexes.
'''
if N<=127:
return np.int8
elif N<=32727:
return np.int16
elif N<=2147483647:
return np.int32
else:
return np.int64
def indent(s,n=1):
'''
Inserts an indentation (4 spaces) or n before the multiline string s.
'''
return re.compile(r'^',re.M).sub(' '*n,s)
def invert_array(x,dtype=int):
'''
Returns a dictionary y of N int arrays such that:
y[i]=set of j such that x[j]==i
'''
if len(x) == 0:
return {}
I = np.argsort(x) # ,kind='mergesort') # uncomment for a stable sort
xs = x[I]
# This below does the same as unique, except the indices point to first time
# each number appears in the array
# See also code for unique (doesn't use diff, not sure which one is faster)
indices=np.hstack(([0],np.where(np.diff(xs)!=0)[0]+1)) # or concatenate?
u=xs[indices]
y={}
for j,i in enumerate(u[:-1]):
y[i]=np.array(I[indices[j]:indices[j+1]],dtype=dtype)
y[u[-1]]=np.array(I[indices[-1]:],dtype=dtype)
return y
def neuron_indexes(x,P):
'''
Returns the array of neuron indexes corresponding to x,
which can be a integer, an array, a slice or a subgroup.
P is the neuron group.
'''
if isinstance(x,NeuronGroup): # it should be checked that x is actually a subgroup of P
i0=x._origin - P._origin # offset of the subgroup x in P
return np.arange(i0,i0+len(x))
else:
return slice_to_array(x,N=len(P))
def slice_to_test(x):
'''
Returns a testing function corresponding to whether an index is in slice x.
x can also be an int.
'''
if isinstance(x,int):
return lambda y:y==x
elif isinstance(x,slice):
start,stop,step=x.start,x.stop,x.step
if start is None:
start=0
if step is None:
step=1
if stop is None:
return lambda y:(y>=start) & ((y-start)%step==0)
else:
return lambda y:(y>=start) & (y<stop) & ((y-start)%step==0)
if __name__=='__main__':
#log_level_debug()
print invert_array(np.array([7,5,2,2,3,5]))
|