/usr/share/pyshared/brian/synapses/spikequeue.py is in python-brian 1.4.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 | """
Spike queues following BEP-21.
The spike queue class stores future synaptic events
produced by a given presynaptic neuron group (or postsynaptic for backward
propagation in STDP).
The structure X is a 2D array, where row is the time bin and column
is the position in that bin (each row is a stack) .
The array is circular in the time dimension. There is a 1D array (n) giving the
position of the last added event in each time bin.
The 2D array is dynamic in the column direction.
The row corresponding to current time is stored in currenttime.
X_flat is a flattened view of X.
Main methods:
* peek()
Outputs the current events: we simply get the row corresponding to
currenttime, so this is fast. We then shift the cursor of the circular
array by one row: next().
* insert(delay, target, offset=None)
Insert events in the queue. Each presynaptic neuron has a corresponding
array of target synapses and corresponding delays. We must push each target
synapse (index) on top of the stack (row) corresponding to the delay. If all synapses
have different delays, this is relatively easy to vectorise. It is a bit
more difficult if there are synapses with the same delays.
For a given presynaptic neuron, each synaptic delay corresponds to coordinates
(i,j) in the circular array of stacks, where i is the delay (stack index and
j is index relative to the top of the stack (0=top, 1=1 above top).
The absolute location in the structure is then calculated as n[i]+j, where
n[i] is the location of the top of stack i. The only difficulty is to calculate
j, and in Python this requires sorting (see development mailing list).
It can be preprocessed if event feeding involves a loop over presynaptic spikes
(if it's vectorised then it's not possible anymore). In this case it takes K*4
bytes.
* offsets(delay)
This calculates the offsets j mentionned above, for a given array of delays.
* precompute_offsets()
This precomputes all offsets for all presynaptic neurons.
* propagate()
The class is implemented as a SpikeMonitor, which means the propagate() function is
called at each timestep with the spikes produced by the neuron group.
The function executes different codes (different strategies) depending on whether
offsets are precomputed or not, and on whether delays are heterogeneous or
homogeneous.
"""
import numpy as np
try:
import pylab
except:
pass
from scipy import weave
from brian.globalprefs import get_global_preference, exists_global_preference, define_global_preference
from brian.monitor import SpikeMonitor
from brian.stdunits import ms
import warnings
__all__=['SpikeQueue']
INITIAL_MAXSPIKESPER_DT = 1
class SpikeQueue(SpikeMonitor):
'''Spike queue
Initialised with arguments:
``source``
The neuron group that sends spikes.
``synapses``
A list of synapses (synapses[i]=array of synapse indices for neuron i).
``delays``
An array of delays (delays[k]=delay of synapse k).
``max_delay=0*ms``
The maximum delay (in second) of synaptic events. At run time, the
structure is resized to the maximum delay in ``delays``, and thus
the ``max_delay`` should only be specified if delays can change
during the simulation (in which case offsets should not be
precomputed).
``maxevents = INITIAL_MAXSPIKESPER_DT``
The initial size of the queue for each timestep. Note that the data
structure automatically grows to the required size, and therefore this
option is generally not useful.
``precompute_offsets = True``
A flag to precompute offsets. By default, offsets (an internal array
derived from ``delays``, used to insert events in the data structure,
see below)
are precomputed for all neurons, the first time the object is run.
This usually results in a speed up but takes memory, which is why it
can be disabled.
**Data structure**
A spike queue is implemented as a 2D array ``X`` that is circular in the time
direction (rows) and dynamic in the events direction (columns). The
row index corresponding to the current timestep is ``currentime``.
Each element contains the target synapse index.
The class is implemented as a :class:`SpikeMonitor`, so that the propagate()
method is called at each timestep (of the monitored group).
**Methods**
.. method:: next()
Advances by one timestep.
.. method:: peek()
Returns the all the synaptic events corresponding to the current time,
as an array of synapse indexes.
.. method:: precompute_offsets()
Precompute all offsets corresponding to delays. This assumes that
delays will not change during the simulation. If they do (between two
runs for example), then this method can be called.
**Offsets**
Offsets are used to solve the problem of inserting multiple synaptic events with the
same delay. This is difficult to vectorise. If there are n synaptic events with the same
delay, these events are given an offset between 0 and n-1, corresponding to their
relative position in the data structure.
They can be either precalculated
(faster), or determined at run time (saves memory). Note that if they
are determined at run time, then it is possible to also vectorise over
presynaptic spikes.
'''
def __init__(self, source, synapses, delays,
max_delay = 0*ms, maxevents = INITIAL_MAXSPIKESPER_DT,
precompute_offsets = True):
self.source = source #NeuronGroup
self.delays = delays
self.synapses = synapses
self._precompute_offsets=precompute_offsets
self._max_delay=max_delay
if max_delay>0: # do not precompute offsets if delays can change
self._precompute_offsets=False
# number of time steps, maximum number of spikes per time step
nsteps = int(np.floor((max_delay)/(self.source.clock.dt)))+1
self.X = np.zeros((nsteps, maxevents), dtype = self.synapses[0].dtype) # target synapses
self.X_flat = self.X.reshape(nsteps*maxevents,)
self.currenttime = 0
self.n = np.zeros(nsteps, dtype = int) # number of events in each time step
self._offsets = None # precalculated offsets
# Compiled version
self._useweave = get_global_preference('useweave')
self._cpp_compiler = get_global_preference('weavecompiler')
self._extra_compile_args = ['-O3']
if self._cpp_compiler == 'gcc':
self._extra_compile_args += get_global_preference('gcc_options') # ['-march=native', '-ffast-math']
if self._useweave: # no need to precompute offsets if weave is used
self._precompute_offsets=False
super(SpikeQueue, self).__init__(source,
record = False)
#useweave=get_global_preference('useweave')
#compiler=get_global_preference('weavecompiler')
def compress(self):
'''
This is called the first time the network is run. The size of the
of the data structure (number of rows) is adjusted to fit the maximum
delay in ``delays'', if necessary. Offsets are calculated, unless
the option ``precompute_offsets'' is set to False. A flag is set if
delays are homogeneous, in which case insertion will use a faster method.
'''
nsteps=max(self.delays)+1
# Check whether some delays are too long
if (self._max_delay>0) and (nsteps>self.X.shape[0]):
raise ValueError,"Synaptic delays exceed maximum delay"
if hasattr(self, '_iscompressed') and self._iscompressed:
return
self._iscompressed = True
# Adjust the maximum delay and number of events per timestep if necessary
maxevents=self.X.shape[1]
if maxevents==INITIAL_MAXSPIKESPER_DT: # automatic resize
maxevents=max(INITIAL_MAXSPIKESPER_DT,max([len(targets) for targets in self.synapses]))
# Check if homogeneous delays
if self._max_delay>0:
self._homogeneous=False
else:
self._homogeneous=(nsteps==min(self.delays)+1)
# Resize
if (nsteps>self.X.shape[0]) or (maxevents>self.X.shape[1]): # Resize
nsteps=max(nsteps,self.X.shape[0]) # Choose max_delay if is is larger than the maximum delay
maxevents=max(maxevents,self.X.shape[1])
self.X = np.zeros((nsteps, maxevents), dtype = self.synapses[0].dtype) # target synapses
self.X_flat = self.X.reshape(nsteps*maxevents,)
self.n = np.zeros(nsteps, dtype = int) # number of events in each time step
# Precompute offsets
if (self._offsets is None) and self._precompute_offsets:
self.precompute_offsets()
################################ SPIKE QUEUE DATASTRUCTURE ######################
def next(self):
'''
Advances by one timestep
'''
self.n[self.currenttime]=0 # erase
self.currenttime=(self.currenttime+1) % len(self.n)
def peek(self):
'''
Returns the all the synaptic events corresponding to the current time,
as an array of synapse indexes.
'''
return self.X[self.currenttime,:self.n[self.currenttime]]
def _update_delays(self, delays):
'''
Internal method to update the delays, used by the Synapses class when the delays are dynamically varied.
Delays are assumed to be represented as floating values in second, hence the conversion to "timestep delays" is handled here.
'''
#log_debug('brian.synapses.spikequeue', 'Updating delays...')
self.delays = np.array(np.floor(delays/self.source.clock.dt), dtype = int)+1
def precompute_offsets(self):
'''
Precompute all offsets corresponding to delays. This assumes that
delays will not change during the simulation. If they do (between two
runs for example), then this method can be called.
'''
self._offsets=[]
for i in range(len(self.synapses)):
delays=self.delays[self.synapses[i].data]
self._offsets.append(self.offsets(delays))
def offsets(self, delay):
'''
Calculates offsets corresponding to a delay array.
If there n identical delays, there are given offsets between
0 and n-1.
Example:
[7,5,7,3,7,5] -> [0,0,1,0,2,1]
The code is complex because tricks are needed for vectorisation.
'''
if self._useweave:
return self.offsets_C(delay)
# We use merge sort because it preserves the input order of equal
# elements in the sorted output
I = np.argsort(delay,kind='mergesort')
xs = delay[I]
J = xs[1:]!=xs[:-1]
#K = xs[1:]==xs[:-1]
A = np.hstack((0, np.cumsum(J)))
#B = np.hstack((0, np.cumsum(K)))
B = np.hstack((0, np.cumsum(-J)))
BJ = np.hstack((0, B[J]))
ei = B-BJ[A]
ofs = np.zeros_like(delay)
ofs[I] = np.array(ei,dtype=ofs.dtype) # maybe types should be signed?
return ofs
def insert(self, delay, target, offset=None):
'''
Vectorised insertion of spike events.
``delay``
Delays in timesteps (array).
``target``
Target synaptic indexes (array).
``offset``
Offsets within timestep (array). If unspecified, they are calculated
from the delay array.
'''
delay=np.array(delay,dtype=int)
if self._useweave: # C-optimised insertion (minor speed up)
self.insert_C(delay,target)
return
if offset is None:
offset=self.offsets(delay)
# Calculate row indexes in the data structure
timesteps = (self.currenttime + delay) % len(self.n)
# (Over)estimate the number of events to be stored, to resize the array
# It's an overestimation for the current time, but I believe a good one
# for future events
m=max(self.n)+len(target)
if (m >= self.X.shape[1]): # overflow
self.resize(m+1)
self.X_flat[timesteps*self.X.shape[1]+offset+self.n[timesteps]]=target
self.n[timesteps] += offset+1 # that's a trick (to update stack size)
# Note: the trick can only work if offsets are ordered in the right way
def insert_homogeneous(self,delay,target):
'''
Inserts events at a fixed delay.
``delay``
Delay in timesteps (scalar).
``target``
Target synaptic indexes (array).
'''
timestep = (self.currenttime + delay) % len(self.n)
nevents=len(target)
m = self.n[timestep]+nevents+1 # If overflow, then at least one self.n is bigger than the size
if (m >= self.X.shape[1]):
self.resize(m+1) # was m previously (not enough)
k=timestep*self.X.shape[1]+self.n[timestep]
self.X_flat[k:k+nevents]=target
self.n[timestep]+=nevents
def resize(self, maxevents):
'''
Resizes the underlying data structure (number of columns = spikes per dt).
``maxevents``
The new number of columns.It will be rounded to the closest power of 2.
'''
# old and new sizes
old_maxevents = self.X.shape[1]
new_maxevents = int(2**np.ceil(np.log2(maxevents))) # maybe 2 is too large
# new array
newX = np.zeros((self.X.shape[0], new_maxevents), dtype = self.X.dtype)
newX[:, :old_maxevents] = self.X[:, :old_maxevents] # copy old data
self.X = newX
self.X_flat = self.X.reshape(self.X.shape[0]*new_maxevents,)
def propagate(self, spikes):
'''
Called by the network object at every timestep.
Spikes produce synaptic events that are inserted in the queue.
'''
if len(spikes):
# print '(Python) In propagate: spikes = ', spikes
if self._homogeneous: # homogeneous delays
synaptic_events=np.hstack([self.synapses[i].data for i in spikes]) # could be not efficient
self.insert_homogeneous(self.delays[0],synaptic_events)
elif self._offsets is None: # vectorise over synaptic events
# there are no precomputed offsets, this is the case (in particular) when there are dynamic delays
synaptic_events=np.hstack([self.synapses[i].data for i in spikes])
if len(synaptic_events):
delay = self.delays[synaptic_events]
self.insert(delay, synaptic_events)
else: # offsets are precomputed
for i in spikes:
synaptic_events=self.synapses[i].data # assuming a dynamic array: could change at run time?
if len(synaptic_events):
delay = self.delays[synaptic_events]
offsets = self._offsets[i]
self.insert(delay, synaptic_events, offsets)
######################################## C optimised versions
def insert_C(self,delay,target):
'''
Insertion of events using weave.
``delay``
Delays in timesteps (array).
``target``
Target synaptic indexes (array).
'''
# Check if we can fit the events (crude check)
nevents=len(target)
m=max(self.n)+nevents
if m>self.X.shape[1]:
self.resize(m)
Xflat=self.X_flat
n=self.n
ncols=self.X.shape[1]
currentt=self.currenttime
ndelays=len(self.n)
code='''
for(int k=0;k<nevents;k++) {
const int d = (currentt+delay[k]) % ndelays;
Xflat[d*ncols+n[d]] = target[k];
n[d]++;
}
'''
weave.inline(code, ['nevents','n','delay','Xflat','target','ncols','currentt','ndelays'], \
compiler=self._cpp_compiler,
extra_compile_args=self._extra_compile_args)
def offsets_C(self, delay):
'''
Calculates offsets corresponding to a delay array, optimised C version.
This function is normally not used (since insert_C does not need it).
'''
nevents=len(delay)
x=np.zeros(self.X.shape[0],dtype=int) # a counter for each delay
ofs=np.zeros(nevents,dtype=int)
code='''
int d;
for(int i=0;i<nevents;i++) {
d=delay[i];
ofs[i]=x[d];
x[d]++;
}
'''
weave.inline(code, ['nevents','x','ofs','delay'], \
compiler=self._cpp_compiler,
extra_compile_args=self._extra_compile_args)
return ofs
def __repr__(self):
res = 'SpikeQueue(shape = (%d, %d), ' % (self.X.shape)
res += 'max_delay = %.1f ms)' % (self._max_delay/ms)
return res
######################################## UTILS
def plot(self, display = True):
'''
Plots the events stored in the spike queue.
'''
for i in range(self.X.shape[0]):
idx = (i + self.currenttime ) % self.X.shape[0]
data = self.X[idx, :self.n[idx]]
pylab.plot(idx * np.ones(len(data)), data, '.')
if display:
pylab.show()
try:
## CSpikeQueue support!
# replaces the SpikeQueue object by a wrapper for the C++ version
# this is only if the import statement below doesn't fail (i.e. the c version is compiled)
## try to import the CSpikeQueue
import brian.experimental.cspikequeue.cspikequeue as _cspikequeue
has_cspikequeue = True
## OK, now replace SpikeQueue by a wrapper to the C version
# this adds compatibility easily to all usual the arguments of SpikeQueue
# hence the arguments should match those of the class above
class SpikeQueue(_cspikequeue.SpikeQueue, SpikeMonitor):
def __init__(self, source, synapses, delays,
max_delay = 60*ms, maxevents = INITIAL_MAXSPIKESPER_DT,
precompute_offsets = True):
self._precompute_offsets = precompute_offsets
SpikeMonitor.__init__(self, source, record = False)
nsteps = int(np.floor(max_delay/self.source.clock.dt))+1
self._max_delay = max_delay
self.synapses = synapses
self.delays = delays # Delay handling should also be in C
_cspikequeue.SpikeQueue.__init__(self, nsteps, int(maxevents))
# self._spikequeue = _cspikequeue.SpikeQueue(nsteps, int(maxevents))
def compress(self):
nsteps=max(self.delays)+1
# Check whether some delays are too long
if (nsteps>self.n_delays):
desired_max_delay = nsteps * self.source.clock.dt
raise ValueError,"Synaptic delays exceed maximum delay, set max_delay to %.1f ms" % (desired_max_delay/ms)
if hasattr(self, '_iscompressed') and self._iscompressed:
return
self._iscompressed = True
# Adjust the maximum delay and number of events per timestep if necessary
maxevents=self.n_maxevents
if maxevents==INITIAL_MAXSPIKESPER_DT: # automatic resize
maxevents=max(INITIAL_MAXSPIKESPER_DT, max([len(targets) for targets in self.synapses]))
# Resize
self.expand(int(maxevents))
def propagate(self, spikes):
'''
Called by the network object at every timestep.
Spikes produce synaptic events that are inserted in the queue.
'''
if len(spikes):
synaptic_events=np.hstack([self.synapses[i].data for i in spikes]) # could be not efficient
self.insert(synaptic_events, self.delays[synaptic_events])
warnings.warn('Using C++ SpikeQueue')
except ImportError:
has_cspikequeue = False
|