/usr/share/pyshared/brian/reset.py is in python-brian 1.4.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 | # ----------------------------------------------------------------------------------
# Copyright ENS, INRIA, CNRS
# Contributors: Romain Brette (brette@di.ens.fr) and Dan Goodman (goodman@di.ens.fr)
#
# Brian is a computer program whose purpose is to simulate models
# of biological neural networks.
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
# ----------------------------------------------------------------------------------
#
'''
Reset mechanisms
'''
__all__ = ['Reset', 'VariableReset', 'Refractoriness', 'NoReset', 'FunReset',
'CustomRefractoriness', 'SimpleCustomRefractoriness', 'StringReset',
'select_reset']
from numpy import where, zeros
from units import *
from clock import *
import inspect
import re
import numpy
from inspection import *
from utils.documentation import flattened_docstring
from globalprefs import *
from log import *
CReset = PythonReset = None
def select_reset(expr, eqs, level=0):
'''
Automatically selects the appropriate Reset object from a string.
Matches the following patterns if expr is a one liner:
var_name = const : Reset
var_name = var_name : VariableReset
others : StringReset
'''
# plan:
# - strip it and see if it is one line, if not select StringReset
# - see if it matches A = B, if not select StringReset
# - check if A, B both match diffeq variable names, and if so
# select VariableReset
# - check that A is a variable name, if not select StringReset
# - extract all the identifiers from B, and if none of them are
# callable, assume it is a constant, try to eval it and then use
# Reset. If not, or if eval fails, use StringReset
# This misses the case of e.g. V=10*mV*exp(1) because exp will be
# callable, but in general a callable means that it could be
# non-constant.
global CReset, PythonReset
use_codegen = get_global_preference('usecodegen') and get_global_preference('usecodegenreset')
use_weave = get_global_preference('useweave') and get_global_preference('usecodegenweave')
if use_codegen:
if CReset is None:
from experimental.codegen.reset import CReset, PythonReset
if use_weave:
log_warn('brian.reset', 'Using codegen CReset')
return CReset(expr, level=level + 1)
else:
log_warn('brian.reset', 'Using codegen PythonReset')
return PythonReset(expr, level=level + 1)
expr = expr.strip()
if '\n' in expr:
return StringReset(expr, level=level + 1)
eqs.prepare()
ns = namespace(expr, level=level + 1)
s = re.search(r'\s*(\w+)\s*=(.+)', expr)
if not s:
return StringReset(expr, level=level + 1)
A = s.group(1)
B = s.group(2).strip()
if A not in eqs._diffeq_names:
return StringReset(expr, level=level + 1)
if B in eqs._diffeq_names:
return VariableReset(B, A)
vars = get_identifiers(B)
all_vars = eqs._eq_names + eqs._diffeq_names + eqs._alias.keys() + ['t']
for v in vars:
if v not in ns or v in all_vars or callable(ns[v]):
return StringReset(expr, level=level + 1)
try:
val = eval(B, ns)
except:
return StringReset(expr, level=level + 1)
return Reset(val, A)
class Reset(object):
'''
Resets specified state variable to a fixed value
**Initialise as:** ::
R = Reset([resetvalue=0*mvolt[, state=0]])
with arguments:
``resetvalue``
The value to reset to.
``state``
The name or number of the state variable to reset.
This will reset all of the neurons that have just spiked. The
given state variable of the neuron group will be set to value
``resetvalue``.
'''
def __init__(self, resetvalue=0 * mvolt, state=0):
self.resetvalue = resetvalue
self.state = state
self.statevectors = {}
def __call__(self, P):
'''
Clamps membrane potential at reset value.
'''
V = self.statevectors.get(id(P), None)
if V is None:
V = P.state_(self.state)
self.statevectors[id(P)] = V
V[P.LS.lastspikes()] = self.resetvalue
def __repr__(self):
return '%s(resetvalue=%s, state=%s)' % (self.__class__.__name__,
repr(self.resetvalue),
repr(self.state))
class StringReset(Reset):
'''
Reset defined by a string
Initialised with arguments:
``expr``
The string expression used to reset. This can include
multiple lines or statements separated by a semicolon.
For example, ``'V=-70*mV'`` or ``'V=-70*mV; Vt+=10*mV'``.
Some standard functions are provided, see below.
``level``
How many levels up in the calling sequence to look for
names in the namespace. Usually 0 for user code.
Standard functions for expressions:
``rand()``
A uniform random number between 0 and 1.
``randn()``
A Gaussian random number with mean 0 and standard deviation 1.
For example, these could be used to implement an adaptive
model with random reset noise with the following string::
E -= 1*mV
V = Vr+rand()*5*mV
'''
def __init__(self, expr, level=0):
expr = flattened_docstring(expr)
self._namespace, unknowns = namespace(expr, level=level + 1, return_unknowns=True)
self._prepared = False
self._expr = expr
class Replacer(object):
def __init__(self, func, n):
self.n = n
self.func = func
def __call__(self):
return self.func(self.n)
self._Replacer = Replacer
def __call__(self, P):
if not self._prepared:
unknowns = [var for var in P.var_index if isinstance(var, str)]
expr = self._expr
for var in unknowns:
expr = re.sub("\\b" + var + "\\b", var + '[_spikes_]', expr)
self._code = compile(expr, "StringReset", "exec")
unknowns.extend(P.staticvars) # make non-differential equations accessible
self._vars = unknowns
self._prepared = True
spikes = P.LS.lastspikes()
self._namespace['_spikes_'] = spikes
self._namespace['rand'] = self._Replacer(numpy.random.rand, len(spikes))
self._namespace['randn'] = self._Replacer(numpy.random.randn, len(spikes))
self._namespace['t'] = P.clock._t
for var in self._vars:
self._namespace[var] = P.state(var)
exec self._code in self._namespace
def __repr__(self):
return "%s(%s)" % (self.__class__.__name__,
repr(self._expr))
class VariableReset(Reset):
'''
Resets specified state variable to the value of another state variable
Initialised with arguments:
``resetvaluestate``
The state variable which contains the value to reset to.
``state``
The name or number of the state variable to reset.
This will reset all of the neurons that have just spiked. The
given state variable of the neuron group will be set to
the value of the state variable ``resetvaluestate``.
'''
def __init__(self, resetvaluestate=1, state=0):
self.resetvaluestate = resetvaluestate
self.state = state
self.resetstatevectors = {}
self.statevectors = {}
def __call__(self, P):
'''
Clamps membrane potential at reset value.
'''
V = self.statevectors.get(id(P), None)
if V is None:
V = P.state_(self.state)
self.statevectors[id(P)] = V
Vr = self.resetstatevectors.get(id(P), None)
if Vr is None:
Vr = P.state_(self.resetvaluestate)
self.resetstatevectors[id(P)] = Vr
lastspikes = P.LS.lastspikes()
V[lastspikes] = Vr[lastspikes]
def __repr__(self):
return 'VariableReset(' + str(self.resetvaluestate) + ', ' + str(self.state) + ')'
class FunReset(Reset):
'''
A reset with a user-defined function.
**Initialised as:** ::
FunReset(resetfun)
with argument:
``resetfun``
A function ``f(G,spikes)`` where ``G`` is the
:class:`NeuronGroup` and ``spikes`` is an array of
the indexes of the neurons to be reset.
'''
def __init__(self, resetfun):
self.resetfun = resetfun
def __call__(self, P):
self.resetfun(P, P.LS.lastspikes())
def __repr__(self):
return '%s(%r)' % (self.__class__.__name__, self.resetfun)
def __str__(self):
return 'Functional threshold mechanism'
class Refractoriness(Reset):
'''
Holds the state variable at the reset value for a fixed time after a spike.
Initialised with arguments:
``resetvalue``
The value to reset and hold to.
``period``
The length of time to hold at the reset value. If using variable
refractoriness, this is the maximum period.
``state``
The name or number of the state variable to reset and hold.
'''
@check_units(period=second)
def __init__(self, resetvalue=0 * mvolt, period=5 * msecond, state=0):
self.period = period
self.resetvalue = resetvalue
self.state = state
self._periods = {} # a dictionary mapping group IDs to periods
self.statevectors = {}
def __call__(self, P):
'''
Clamps state variable at reset value.
'''
# if we haven't computed the integer period for this group yet.
# do so now
if id(P) in self._periods:
period = self._periods[id(P)]
else:
period = int(self.period / P.clock.dt) + 1
self._periods[id(P)] = period
V = self.statevectors.get(id(P), None)
if V is None:
V = P.state_(self.state)
self.statevectors[id(P)] = V
neuronindices = P.LS[0:period]
if P._variable_refractory_time:
neuronindices = neuronindices[P._next_allowed_spiketime[neuronindices] > (P.clock._t - P.clock._dt * 0.25)]
V[neuronindices] = self.resetvalue
def __repr__(self):
return 'Refractory period, ' + str(self.period)
class SimpleCustomRefractoriness(Refractoriness):
'''
Holds the state variable at the custom reset value for a fixed time after a spike.
**Initialised as:** ::
SimpleCustomRefractoriness(resetfunc[,period=5*ms[,state=0]])
with arguments:
``resetfun``
The custom reset function ``resetfun(P, spikes)`` for ``P`` a
:class:`NeuronGroup` and ``spikes`` a list of neurons that
fired spikes.
``period``
The length of time to hold at the reset value.
``state``
The name or number of the state variable to reset and hold,
it is your responsibility to check that this corresponds to
the custom reset function.
The assumption is that ``resetfun(P, spikes)`` will reset the state
variable ``state`` on the group ``P`` for the spikes with indices
``spikes``. The values assigned by the custom reset function are
stored by this object, and they are clamped at these values for
``period``. This object does not introduce refractoriness for more
than the one specified variable ``state`` or for spike indices
other than those in the variable ``spikes`` passed to the custom
reset function.
'''
@check_units(period=second)
def __init__(self, resetfun, period=5 * msecond, state=0):
self.period = period
self.resetfun = resetfun
self.state = state
self._periods = {} # a dictionary mapping group IDs to periods
self.statevectors = {}
self.lastresetvalues = {}
def __call__(self, P):
'''
Clamps state variable at reset value.
'''
# if we haven't computed the integer period for this group yet.
# do so now
if id(P) in self._periods:
period = self._periods[id(P)]
else:
period = int(self.period / P.clock.dt) + 1
self._periods[id(P)] = period
V = self.statevectors.get(id(P), None)
if V is None:
V = P.state_(self.state)
self.statevectors[id(P)] = V
LRV = self.lastresetvalues.get(id(P), None)
if LRV is None:
LRV = zeros(len(V))
self.lastresetvalues[id(P)] = LRV
lastspikes = P.LS.lastspikes()
self.resetfun(P, lastspikes) # call custom reset function
LRV[lastspikes] = V[lastspikes] # store a copy of the custom resetted values
clampedindices = P.LS[0:period]
V[clampedindices] = LRV[clampedindices] # clamp at custom resetted values
def __repr__(self):
return 'Custom refractory period, ' + str(self.period)
class CustomRefractoriness(Refractoriness):
'''
Holds the state variable at the custom reset value for a fixed time after a spike.
**Initialised as:** ::
CustomRefractoriness(resetfunc[,period=5*ms[,refracfunc=resetfunc]])
with arguments:
``resetfunc``
The custom reset function ``resetfunc(P, spikes)`` for ``P`` a
:class:`NeuronGroup` and ``spikes`` a list of neurons that
fired spikes.
``refracfunc``
The custom refractoriness function ``refracfunc(P, indices)`` for ``P`` a
:class:`NeuronGroup` and ``indices`` a list of neurons that are in
their refractory periods. In some cases, you can choose not to specify this,
and it will use the reset function.
``period``
The length of time to hold at the reset value.
'''
@check_units(period=second)
def __init__(self, resetfun, period=5 * msecond, refracfunc=None):
self.period = period
self.resetfun = resetfun
if refracfunc is None:
refracfunc = resetfun
self.refracfunc = refracfunc
self._periods = {} # a dictionary mapping group IDs to periods
def __call__(self, P):
'''
Clamps state variable at reset value.
'''
# if we haven't computed the integer period for this group yet.
# do so now
if id(P) in self._periods:
period = self._periods[id(P)]
else:
period = int(self.period / P.clock.dt) + 1
self._periods[id(P)] = period
lastspikes = P.LS.lastspikes()
self.resetfun(P, lastspikes) # call custom reset function
clampedindices = P.LS[0:period]
self.refracfunc(P, clampedindices)
def __repr__(self):
return 'Custom refractory period, ' + str(self.period)
class NoReset(Reset):
'''
Absence of reset mechanism.
**Initialised as:** ::
NoReset()
'''
def __init__(self):
pass
def __call__(self, P):
pass
def __repr__(self):
return 'NoReset()'
def __str__(self):
return 'No reset'
|