This file is indexed.

/usr/share/pyshared/brian/hears/sounds.py is in python-brian 1.4.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
from brian import *
from numpy import *
import numpy
import array as pyarray
import time
import struct
try:
    import pygame
    have_pygame = True
except ImportError:
    have_pygame = False
try:
    from scikits.samplerate import resample
    have_scikits_samplerate = True
except (ImportError, ValueError):
    have_scikits_samplerate = False
from bufferable import Bufferable
from prefs import get_samplerate
from db import dB, dB_type, dB_error, gain
from scipy.signal import fftconvolve, lfilter
from scipy.misc import factorial

__all__ = ['BaseSound', 'Sound',
           'pinknoise','brownnoise','powerlawnoise',
           'whitenoise', 'irns', 'irno', 
           'tone', 'click', 'clicks', 'silence', 'sequence', 'harmoniccomplex',
           'loadsound', 'savesound', 'play', 'vowel'
           ]


_mixer_status = [-1,-1]

class BaseSound(Bufferable):
    '''
    Base class for Sound and OnlineSound
    '''
    pass

class Sound(BaseSound, numpy.ndarray):
    '''
    Class for working with sounds, including loading/saving, manipulating and playing.

    For an overview, see :ref:`sounds_overview`.
    
    **Initialisation**
    
    The following arguments are used to initialise a sound object
    
    ``data``
        Can be a filename, an array, a function or a sequence (list or tuple).
        If its a filename, the sound file (WAV or AIFF) will be loaded. If its
        an array, it should have shape ``(nsamples, nchannels)``. If its a
        function, it should be a function f(t). If its a sequence, the items
        in the sequence can be filenames, functions, arrays or Sound objects.
        The output will be a multi-channel sound with channels the corresponding
        sound for each element of the sequence. 
    ``samplerate=None``
        The samplerate, if necessary, will use the default (for an array or
        function) or the samplerate of the data (for a filename).
    ``duration=None``
        The duration of the sound, if initialising with a function.
  
    **Loading, saving and playing**
    
    .. automethod:: load
    .. automethod:: save
    .. automethod:: play

    **Properties**
    
    .. autoattribute:: duration
    .. autoattribute:: nsamples
    .. autoattribute:: nchannels
    .. autoattribute:: times
    .. autoattribute:: left
    .. autoattribute:: right
    .. automethod:: channel
    
    **Generating sounds**
    
    All sound generating methods can be used with durations arguments in samples (int) or units (e.g. 500*ms). One can also set the number of channels by setting the keyword argument nchannels to the desired value. Notice that for noise the channels will be generated independantly.
    
    .. automethod:: tone
    .. automethod:: whitenoise
    .. automethod:: powerlawnoise
    .. automethod:: brownnoise
    .. automethod:: pinknoise
    .. automethod:: silence
    .. automethod:: click
    .. automethod:: clicks
    .. automethod:: harmoniccomplex
    .. automethod:: vowel
    
    **Timing and sequencing**
    
    .. automethod:: sequence(*sounds, samplerate=None)
    .. automethod:: repeat
    .. automethod:: extended
    .. automethod:: shifted
    .. automethod:: resized

    **Slicing**
    

    One can slice sound objects in various ways, for example ``sound[100*ms:200*ms]``
    returns the part of the sound between 100 ms and 200 ms (not including the
    right hand end point). If the sound is less than 200 ms long it will be
    zero padded. You can also set values using slicing, e.g.
    ``sound[:50*ms] = 0`` will silence the first 50 ms of the sound. The syntax
    is the same as usual for Python slicing. In addition, you can select a
    subset of the channels by doing, for example, ``sound[:, -5:]`` would be
    the last 5 channels. For time indices, either times or samples can be given,
    e.g. ``sound[:100]`` gives the first 100 samples. In addition, steps can
    be used for example to reverse a sound as ``sound[::-1]``.
    
    **Arithmetic operations**
    
    Standard arithemetical operations and numpy functions work as you would
    expect with sounds, e.g. ``sound1+sound2``, ``3*sound`` or ``abs(sound)``.
    
    **Level**
    
    .. autoattribute:: level
    .. automethod:: atlevel
    .. autoattribute:: maxlevel
    .. automethod:: atmaxlevel
    
    **Ramping**
    
    .. automethod:: ramp
    .. automethod:: ramped
    
    **Plotting**
    
    .. automethod:: spectrogram
    .. automethod:: spectrum
    '''
    duration = property(fget=lambda self:len(self) / self.samplerate,
                        doc='The length of the sound in seconds.')
    nsamples = property(fget=lambda self:len(self),
                        doc='The number of samples in the sound.')
    times = property(fget=lambda self:arange(len(self), dtype=float) / self.samplerate,
                     doc='An array of times (in seconds) corresponding to each sample.')
    nchannels = property(fget=lambda self:self.shape[1],
                         doc='The number of channels in the sound.')
    left = property(fget=lambda self:self.channel(0),
                    doc='The left channel for a stereo sound.')
    right = property(fget=lambda self:self.channel(1),
                     doc='The right channel for a stereo sound.')

    @check_units(samplerate=Hz, duration=second)
    def __new__(cls, data, samplerate=None, duration=None):
        if isinstance(data, numpy.ndarray):
            samplerate = get_samplerate(samplerate)
#            if samplerate is None:
#                raise ValueError('Must specify samplerate to initialise Sound with array.')
            if duration is not None:
                raise ValueError('Cannot specify duration when initialising Sound with array.')
            x = array(data, dtype=float)
        elif isinstance(data, str):
            if duration is not None:
                raise ValueError('Cannot specify duration when initialising Sound from file.')
            if samplerate is not None:
                raise ValueError('Cannot specify samplerate when initialising Sound from a file.')
            x = Sound.load(data)
            samplerate = x.samplerate
        elif callable(data):
            samplerate = get_samplerate(samplerate)
#            if samplerate is None:
#                raise ValueError('Must specify samplerate to initialise Sound with function.')
            if duration is None:
                raise ValueError('Must specify duration to initialise Sound with function.')
            L = int(rint(duration * samplerate))
            t = arange(L, dtype=float) / samplerate
            x = data(t)
        elif isinstance(data, (list, tuple)):
            kwds = {}
            if samplerate is not None:
                kwds['samplerate'] = samplerate
            if duration is not None:
                kwds['duration'] = duration
            channels = tuple(Sound(c, **kwds) for c in data)
            x = hstack(channels)
            samplerate = channels[0].samplerate
        else:
            raise TypeError('Cannot initialise Sound with data of class ' + str(data.__class__))
        if len(x.shape)==1:
            x.shape = (len(x), 1)
        x = x.view(cls)
        x.samplerate = samplerate
        x.buffer_init()
        return x

    def __array_wrap__(self, obj, context=None):
        handled = False
        x = numpy.ndarray.__array_wrap__(self, obj, context)
        if not hasattr(x, 'samplerate') and hasattr(self, 'samplerate'):
            x.samplerate = self.samplerate
        if context is not None:
            ufunc = context[0]
            args = context[1]
        return x
    
    def __array_finalize__(self,obj):
        if obj is None: return
        self.samplerate = getattr(obj, 'samplerate', None)
        
    def buffer_init(self):
        pass
        
    def buffer_fetch(self, start, end):
        if start<0:
            raise IndexError('Can only use positive indices in buffer.')
        samples = end-start
        X = asarray(self)[start:end, :]
        if X.shape[0]<samples:
            X = vstack((X, zeros((samples-X.shape[0], X.shape[1]))))
        return X

    def channel(self, n):
        '''
        Returns the nth channel of the sound.
        '''
        return Sound(self[:, n], self.samplerate)

    def __add__(self, other):
        if isinstance(other, Sound):
            if int(other.samplerate) > int(self.samplerate):
                self = self.resample(other.samplerate)
            elif int(other.samplerate) < int(self.samplerate):
                other = other.resample(self.samplerate)

            if len(self) > len(other):
                other = other.resized(len(self))
            elif len(self) < len(other):
                self = self.resized(len(other))

            return Sound(numpy.ndarray.__add__(self, other), samplerate=self.samplerate)
        else:
            x = numpy.ndarray.__add__(self, other)
            return Sound(x, self.samplerate)
    __radd__ = __add__
    
    # getslice and setslice need to be implemented for compatibility reasons,
    # but __getitem__ covers all the functionality so we just use that
    def __getslice__(self, start, stop):
        return self.__getitem__(slice(start, stop))

    def __setslice__(self, start, stop, seq):
        return self.__setitem__(slice(start, stop), seq)
    
    def __getitem__(self,key):
        channel = slice(None)
        if isinstance(key, tuple):
            channel = key[1]
            key = key[0]

        if isinstance(key, int):
            return np.ndarray.__getitem__(self, key)
        if isinstance(key, float):
            return np.ndarray.__getitem__(self, round(key*self.samplerate))

        sliceattr = [v for v in [key.start, key.stop] if v is not None]
        slicedims = array([units.have_same_dimensions(flag, second) for flag in sliceattr])
        attrisint = array([isinstance(v, int) for v in sliceattr])
        s = sum(attrisint)
        if s!=0 and s!=len(sliceattr):
            raise ValueError('Slice attributes must be all ints or all times')
        if s==len(sliceattr): # all ints
            start = key.start or 0
            stop = key.stop or self.shape[0]
            step = key.step or 1
            if start>=0 and stop<=self.shape[0]:
                return Sound(np.ndarray.__getitem__(self, (key, channel)),
                             self.samplerate)
            else:
                startpad = max(-start, 0)
                endpad = max(stop-self.shape[0], 0)
                startmid = max(start, 0)
                endmid = min(stop, self.shape[0])
                atstart = zeros((startpad, self.shape[1]))
                atend = zeros((endpad, self.shape[1]))
                return Sound(vstack((atstart,
                                     asarray(self)[startmid:endmid:step],
                                     atend)), self.samplerate)
        if not slicedims.all():
            raise DimensionMismatchError('Slicing',
                                        *[units.get_unit(d) for d in sliceattr])
        
        start = key.start or 0*msecond
        stop = key.stop or self.duration
        step = key.step or 1
        if int(step)!=step:
            #resampling
            raise NotImplementedError
        start = int(rint(start*self.samplerate))
        stop = int(rint(stop*self.samplerate))
        return self.__getitem__((slice(start,stop,step),channel))
    
    def __setitem__(self,key,value):
        channel=slice(None)
        if isinstance(key,tuple):
            channel=key[1]
            key=key[0]
        
        if isinstance(key,int):
            return np.ndarray.__setitem__(self,(key,channel),value)
        if isinstance(key,float):
            return np.ndarray.__setitem__(self,(int(rint(key*self.samplerate)),channel),value)

        sliceattr = [v for v in [key.start, key.step, key.stop] if v is not None]
        slicedims = array([units.have_same_dimensions(flag, second) for flag in sliceattr])
        attrisint = array([isinstance(v, int) for v in sliceattr])
        s = sum(attrisint)
        if s!=0 and s!=len(sliceattr):
            raise ValueError('Slice attributes must be all ints or all times')
        if s==len(sliceattr): # all ints
            # If value is a mono sound its shape will be (N, 1) but the numpy
            # setitem will have shape (N,) so in this case it's a shape mismatch
            # so we squeeze the array to make sure this doesn't happen.
            if isinstance(value,Sound) and channel!=slice(None):
                value=value.squeeze()
            return asarray(self).__setitem__((key,channel),value) # returns None

        if not slicedims.all():
            raise DimensionMismatchError('Slicing',*[units.get_unit(d) for d in sliceattr])

        if key.__getattribute__('step') is not None:
            # resampling?
            raise NotImplementedError
        
        start = key.start
        stop = key.stop or self.duration
        if (start is not None and start<0*ms) or stop > self.duration:
            raise IndexError('Slice bigger than Sound object')
        if start is not None: start = int(rint(start*self.samplerate))
        stop = int(rint(stop*self.samplerate))
        return self.__setitem__((slice(start,stop),channel),value)

    def extended(self, duration):
        '''
        Returns the Sound with length extended by the given duration, which
        can be the number of samples or a length of time in seconds.
        '''
        duration = get_duration(duration, self.samplerate)
        return self[:self.nsamples+duration]

    def resized(self, L):
        '''
        Returns the Sound with length extended (or contracted) to have L samples.
        '''
        if L == len(self):
            return self
        elif L < len(self):
            return Sound(self[:L, :], samplerate=self.samplerate)
        else:
            padding = zeros((L - len(self), self.nchannels))
            return Sound(concatenate((self, padding)), samplerate=self.samplerate)

    def shifted(self, duration, fractional=False, filter_length=2048):
        '''
        Returns the sound delayed by duration, which can be the number of
        samples or a length of time in seconds. Normally, only integer
        numbers of samples will be used, but if ``fractional=True`` then
        the filtering method from
        `http://www.labbookpages.co.uk/audio/beamforming/fractionalDelay.html <http://www.labbookpages.co.uk/audio/beamforming/fractionalDelay.html>`__
        will be used (introducing some small numerical errors). With this
        method, you can specify the ``filter_length``, larger values are
        slower but more accurate, especially at higher frequencies. The large
        default value of 2048 samples provides good accuracy for sounds with
        frequencies above 20 Hz, but not for lower frequency sounds. If you are
        restricted to high frequency sounds, a smaller value will be more
        efficient. Note that if ``fractional=True`` then
        ``duration`` is assumed to be a time not a number of samples.
        '''
        if not fractional:
            if not isinstance(duration, int):
                duration = int(rint(duration*self.samplerate))
            if duration>=0:
                y = vstack((zeros((duration, self.nchannels)), self))
                return Sound(y, samplerate=self.samplerate)
            else:
                return self[-duration:, :]
        else:
            if self.nchannels>1:
                sounds = [self.channel(i).shifted(duration, fractional=True, filter_length=filter_length) for i in xrange(self.nchannels)]
                return Sound(hstack(sounds), samplerate=self.samplerate)
            # Adapted from
            # http://www.labbookpages.co.uk/audio/beamforming/fractionalDelay.html
            delay = duration*self.samplerate
            if delay>=0:
                idelay = int(delay)
            elif delay<0:
                idelay = -int(-delay)
            delay -= idelay
            centre_tap = filter_length // 2
            t = arange(filter_length)
            x = t-delay
            if abs(round(delay)-delay)<1e-10:
                tap_weight = array(x==centre_tap, dtype=float)
            else:
                sinc = sin(pi*(x-centre_tap))/(pi*(x-centre_tap))
                window = 0.54-0.46*cos(2.0*pi*(x+0.5)/filter_length) # Hamming window
                tap_weight = window*sinc
            if filter_length<256:
                y = convolve(tap_weight, self.flatten())
            else:
                y = fftconvolve(tap_weight, self.flatten())
            y = y[filter_length/2:-filter_length/2]
            sound = Sound(y, self.samplerate)
            sound = sound.shifted(idelay)
            return sound

    def repeat(self, n):
        '''
        Repeats the sound n times
        '''
        x = vstack((self,)*n)
        return Sound(x, samplerate=self.samplerate)

    ### TODO: test this - I haven't installed scikits.samplerate on windows
    # it should work, according to the documentation 2D arrays are acceptable
    # in the format we use fof sounds here
    @check_units(samplerate=Hz)
    def resample(self, samplerate, resample_type='sinc_best'):
        '''
        Returns a resampled version of the sound.
        '''
        if not have_scikits_samplerate:
            raise ImportError('Need scikits.samplerate package for resampling')
        y = array(resample(self, float(samplerate / self.samplerate), resample_type),
                  dtype=float64)
        return Sound(y, samplerate=samplerate)

    def _init_mixer(self):
        global _mixer_status
        if _mixer_status==[-1,-1] or _mixer_status[0]!= self.nchannels or _mixer_status[1] != self.samplerate:
            pygame.mixer.quit()
            pygame.mixer.init(int(self.samplerate), -16, self.nchannels)
            _mixer_status=[self.nchannels,self.samplerate]

    
    def play(self, normalise=False, sleep=False):
        '''
        Plays the sound (normalised to avoid clipping if required). If
        sleep=True then the function will wait until the sound has finished
        playing before returning.
        '''
        if self.nchannels>2:
            raise ValueError("Can only play sounds with 1 or 2 channels.")
        self._init_mixer()
        if normalise:
            a = amax(abs(self))
        else:
            a = 1
        x = array((2 ** 15 - 1) * clip(self / a, -1, 1), dtype=int16)
        if self.nchannels==1:
            x.shape = x.size
        # Make sure pygame receives an array in C-order        
        x = pygame.sndarray.make_sound(ascontiguousarray(x))
        x.play()
        if sleep:
            time.sleep(self.duration)

    def spectrogram(self, low=None, high=None, log_power=True, other = None,  **kwds):
        '''
        Plots a spectrogram of the sound
        
        Arguments:
        
        ``low=None``, ``high=None``
            If these are left unspecified, it shows the full spectrogram,
            otherwise it shows only between ``low`` and ``high`` in Hz.
        ``log_power=True``
            If True the colour represents the log of the power.
        ``**kwds``
            Are passed to Pylab's ``specgram`` command.
        
        Returns the values returned by pylab's ``specgram``, namely
        ``(pxx, freqs, bins, im)`` where ``pxx`` is a 2D array of powers,
        ``freqs`` is the corresponding frequencies, ``bins`` are the time bins,
        and ``im`` is the image axis.
        '''
        if self.nchannels>1:
            raise ValueError('Can only plot spectrograms for mono sounds.')
        if other is not None:
            x = self.flatten()-other.flatten()
        else:
            x = self.flatten()
        pxx, freqs, bins, im = specgram(x, Fs=self.samplerate, **kwds)
        if low is not None or high is not None:
            restricted = True
            if low is None:
                low = 0*Hz
            if high is None:
                high = amax(freqs)*Hz
            I = logical_and(low <= freqs, freqs <= high)
            I2 = where(I)[0]
            I2 = [max(min(I2) - 1, 0), min(max(I2) + 1, len(freqs) - 1)]
            Z = pxx[I2[0]:I2[-1], :]
        else:
            restricted = False
            Z = pxx
        if log_power:
            Z[Z < 1e-20] = 1e-20 # no zeros because we take logs
            Z = 10 * log10(Z)
        Z = flipud(Z)
        if restricted:
            imshow(Z, extent=(0, amax(bins), freqs[I2[0]], freqs[I2[-1]]),
                   origin='upper', aspect='auto')
        else:
            imshow(Z, extent=(0, amax(bins), freqs[0], freqs[-1]),
                   origin='upper', aspect='auto')
        xlabel('Time (s)')
        ylabel('Frequency (Hz)')
        return (pxx, freqs, bins, im)

    @check_units(low=Hz, high=Hz)
    def spectrum(self, low=None, high=None, log_power=True, display=False):
        '''
        Returns the spectrum of the sound and optionally plots it.
        
        Arguments:
        
        ``low``, ``high`` 
            If these are left unspecified, it shows the full spectrum,
            otherwise it shows only between ``low`` and ``high`` in Hz.
        ``log_power=True``
            If True it returns the log of the power.
        ``display=False``
            Whether to plot the output.
        
        Returns ``(Z, freqs, phase)``
        where ``Z`` is a 1D array of powers, ``freqs`` is the corresponding
        frequencies, ``phase`` is the unwrapped phase of spectrum.
        '''
        if self.nchannels>1:
            raise ValueError('Can only plot spectrum for mono sounds.')

        # Flatten array, fft operates on the last axis by default
        sp = numpy.fft.fft(array(self).flatten())
        freqs = array(range(len(sp)), dtype=float64) / len(sp) * float64(self.samplerate)
        pxx = abs(sp) ** 2
        phase = unwrap(mod(angle(sp), 2 * pi))
        if low is not None or high is not None:
            restricted = True
            if low is None:
                low = 0*Hz
            if high is None:
                high = amax(freqs)*Hz
            I = logical_and(low <= freqs, freqs <= high)
            I2 = where(I)[0]
            Z = pxx[I2]
            freqs = freqs[I2]
            phase = phase[I2]
        else:
            restricted = False
            Z = pxx
        if log_power:
            Z[Z < 1e-20] = 1e-20 # no zeros because we take logs
            Z = 10 * log10(Z)
        if display:
            subplot(211)
            semilogx(freqs, Z)
            ticks_freqs = 32000 * 2 ** -array(range(18), dtype=float64)
            xticks(ticks_freqs, map(str, ticks_freqs))
            grid()
            xlim((freqs[0], freqs[-1]))
            xlabel('Frequency (Hz)')
            ylabel('Power (dB/Hz)') if log_power else ylabel('Power')
            subplot(212)
            semilogx(freqs, phase)
            ticks_freqs = 32000 * 2 ** -array(range(18), dtype=float64)
            xticks(ticks_freqs, map(str, ticks_freqs))
            grid()
            xlim((freqs[0], freqs[-1]))
            xlabel('Frequency (Hz)')
            ylabel('Phase (rad)')
            show()
        return (Z, freqs, phase)

    def get_level(self):
        '''
        Returns level in dB SPL (RMS) assuming array is in Pascals.
        In the case of multi-channel sounds, returns an array of levels
        for each channel, otherwise returns a float.
        '''
        if self.nchannels==1:
            rms_value = sqrt(mean((asarray(self)-mean(asarray(self)))**2))
            rms_dB = 20.0*log10(rms_value/2e-5)
            return rms_dB*dB
        else:
            return array(tuple(self.channel(i).get_level() for i in xrange(self.nchannels)))

    def set_level(self, level):
        '''
        Sets level in dB SPL (RMS) assuming array is in Pascals. ``level``
        should be a value in dB, or a tuple of levels, one for each channel.
        '''
        rms_dB = self.get_level()
        if self.nchannels>1:
            level = array(level)
            if level.size==1:
                level = level.repeat(self.nchannels)
            level = reshape(level, (1, self.nchannels))
            rms_dB = reshape(rms_dB, (1, self.nchannels))
        else:
            if not isinstance(level, dB_type):
                raise dB_error('Must specify level in dB')
            rms_dB = float(rms_dB)
            level = float(level)
        gain = 10**((level-rms_dB)/20.)
        self *= gain

    level = property(fget=get_level, fset=set_level, doc='''
        Can be used to get or set the level of a sound, which should be in dB.
        For single channel sounds a value in dB is used, for multiple channel
        sounds a value in dB can be used for setting the level (all channels
        will be set to the same level), or a list/tuple/array of levels. It
        is assumed that the unit of the sound is Pascals.
        ''')
    
    def atlevel(self, level):
        '''
        Returns the sound at the given level in dB SPL (RMS) assuming array is
        in Pascals. ``level`` should be a value in dB, or a tuple of levels,
        one for each channel.
        '''
        newsound = self.copy()
        newsound.level = level
        return newsound
    
    def get_maxlevel(self):
        return amax(self.level)*dB
    
    def set_maxlevel(self, level):
        self.level += level-self.maxlevel
        
    maxlevel = property(fget=get_maxlevel, fset=set_maxlevel, doc='''
        Can be used to set or get the maximum level of a sound. For mono
        sounds, this is the same as the level, but for multichannel sounds
        it is the maximum level across the channels. Relative level differences
        will be preserved. The specified level should be a value in dB, and it
        is assumed that the unit of the sound is Pascals. 
        ''')

    def atmaxlevel(self, level):
        '''
        Returns the sound with the maximum level across channels set to the
        given level. Relative level differences will be preserved. The specified
        level should be a value in dB and it is assumed that the unit of the
        sound is Pascals.
        '''
        newsound = self.copy()
        newsound.maxlevel = level
        return newsound
            
    def ramp(self, when='onset', duration=10*ms, envelope=None, inplace=True):
        '''
        Adds a ramp on/off to the sound
        
        ``when='onset'``
            Can take values 'onset', 'offset' or 'both'
        ``duration=10*ms``
            The time over which the ramping happens
        ``envelope``
            A ramping function, if not specified uses ``sin(pi*t/2)**2``. The
            function should be a function of one variable ``t`` ranging from
            0 to 1, and should increase from ``f(0)=0`` to ``f(0)=1``. The
            reverse is applied for the offset ramp.
        ``inplace``
            Whether to apply ramping to current sound or return a new array.
        '''
        when = when.lower().strip()
        if envelope is None: envelope = lambda t:sin(pi * t / 2) ** 2
        if not isinstance(duration, int):
            sz = int(rint(duration * self.samplerate))
        else:
            sz = duration
        multiplier = envelope(reshape(linspace(0.0, 1.0, sz), (sz, 1)))
        if inplace:
            target = self
        else:
            target = Sound(copy(self), self.samplerate)
        if when == 'onset' or when == 'both':
            target[:sz, :] *= multiplier
        if when == 'offset' or when == 'both':
            target[target.nsamples-sz:, :] *= multiplier[::-1]
        return target
    
    @check_units(duration=second)
    def ramped(self, when='onset', duration=10*ms, envelope=None):
        '''
        Returns a ramped version of the sound (see :meth:`Sound.ramp`).
        '''
        return self.ramp(when=when, duration=duration, envelope=envelope, inplace=False)

    def fft(self,n=None):
        '''
        Performs an n-point FFT on the sound object, that is an array of the same size containing the DFT of each channel. n defaults to the number of samples of the sound, but can be changed manually setting the ``n`` keyword argument
        '''
        if n is None:
            n=self.shape[0]
        res=zeros(n,self.nchannels)
        for i in range(self.nchannels):
            res[:,i]=fft(asarray(self)[:,i].flatten(),n=n)
        return res
            
        
    
    @staticmethod
    @check_units(frequency=Hz, duration=second, samplerate=Hz)
    def tone(frequency, duration, phase=0, samplerate=None, nchannels=1):
        '''
        Returns a pure tone at frequency for duration, using the default
        samplerate or the given one. The ``frequency`` and ``phase`` parameters
        can be single values, in which case multiple channels can be
        specified with the ``nchannels`` argument, or they can be sequences
        (lists/tuples/arrays) in which case there is one frequency or phase for
        each channel.
        '''
        samplerate = get_samplerate(samplerate)
        duration = get_duration(duration,samplerate)
        frequency = array(frequency)
        phase = array(phase)
        if frequency.size>nchannels and nchannels==1:
            nchannels = frequency.size
        if phase.size>nchannels and nchannels==1:
            nchannels = phase.size
        if frequency.size==nchannels:
            frequency.shape = (1, nchannels)
        if phase.size==nchannels:
            phase.shape =(nchannels, 1)
        t = arange(0, duration, 1)/samplerate
        t.shape = (t.size, 1) # ensures C-order (in contrast to tile(...).T )
        x = sin(phase + 2.0 * pi * frequency * tile(t, (1, nchannels)))
        return Sound(x, samplerate)

    @staticmethod
    @check_units(f0=Hz, duration=second, samplerate=Hz)
    def harmoniccomplex(f0, duration, amplitude=1, phase=0, samplerate=None, nchannels=1):
        '''
        Returns a harmonic complex composed of pure tones at integer multiples
        of the fundamental frequency ``f0``. 
        The ``amplitude`` and
        ``phase`` keywords can be set to either a single value or an
        array of values. In the former case the value is set for all
        harmonics, and harmonics up to the sampling frequency are
        generated. In the latter each harmonic parameter is set
        separately, and the number of harmonics generated corresponds
        to the length of the array.
        '''
        samplerate=get_samplerate(samplerate)

        phases = np.array(phase).flatten()
        amplitudes = np.array(amplitude).flatten()
        
        if len(phases)>1 or len(amplitudes)>1:
            if (len(phases)>1 and len(amplitudes)>1) and (len(phases) != len(amplitudes)):
                raise ValueError('Please specify the same number of phases and amplitudes')        
            Nharmonics = max(len(phases),len(amplitudes)) 
        else:
            Nharmonics = int(np.floor( samplerate/(2*f0) ) )
            
        if len(phases) == 1:
            phases = np.tile(phase, Nharmonics)
        if len(amplitudes) == 1:
            amplitudes = np.tile(amplitude, Nharmonics)
            
        x = amplitudes[0]*tone(f0, duration, phase = phases[0], 
                               samplerate = samplerate, nchannels = nchannels)
        for i in range(1,Nharmonics):
            x += amplitudes[i]*tone((i+1)*f0, duration, phase = phases[i], 
                                    samplerate = samplerate, nchannels = nchannels)
        return Sound(x,samplerate)
    
    @staticmethod
    @check_units(duration=second, samplerate=Hz)
    def whitenoise(duration, samplerate=None, nchannels=1):
        '''
        Returns a white noise. If the samplerate is not specified, the global
        default value will be used.
        '''
        samplerate = get_samplerate(samplerate)
        duration = get_duration(duration,samplerate)
        x = randn(duration,nchannels)
        return Sound(x, samplerate)

    @staticmethod
    @check_units(duration=second, samplerate=Hz)
    def powerlawnoise(duration, alpha, samplerate=None, nchannels=1,normalise=False):
        '''
        Returns a power-law noise for the given duration. Spectral density per unit of bandwidth scales as 1/(f**alpha).
        
        Sample usage::
        
            noise = powerlawnoise(200*ms, 1, samplerate=44100*Hz)
        
        Arguments:
        
        ``duration`` 
            Duration of the desired output.
        ``alpha``
            Power law exponent.
        ``samplerate``
            Desired output samplerate
        '''
        samplerate = get_samplerate(samplerate)
        duration = get_duration(duration,samplerate)
        
        # Adapted from http://www.eng.ox.ac.uk/samp/software/powernoise/powernoise.m
        # Little MA et al. (2007), "Exploiting nonlinear recurrence and fractal
        # scaling properties for voice disorder detection", Biomed Eng Online, 6:23
        n=duration
        n2=floor(n/2)
        
        f=array(fftfreq(n,d=1.0/samplerate), dtype=complex)
        f.shape=(len(f),1)
        f=tile(f,(1,nchannels))
        
        if n%2==1:
            z=(randn(n2,nchannels)+1j*randn(n2,nchannels))
            a2=1.0/( f[1:(n2+1),:]**(alpha/2.0))
        else:
            z=(randn(n2-1,nchannels)+1j*randn(n2-1,nchannels))
            a2=1.0/(f[1:n2,:]**(alpha/2.0))
        
        a2*=z
        
        if n%2==1:
            d=vstack((ones((1,nchannels)),a2,
                      flipud(conj(a2))))
        else:
            d=vstack((ones((1,nchannels)),a2,
                      1.0/( abs(f[n2])**(alpha/2.0) )*
                      randn(1,nchannels),
                      flipud(conj(a2))))
        
        
        x=real(ifft(d.flatten()))                  
        x.shape=(n,nchannels)

        if normalise:
            for i in range(nchannels):
                #x[:,i]=normalise_rms(x[:,i])
                x[:,i] = ((x[:,i] - amin(x[:,i]))/(amax(x[:,i]) - amin(x[:,i])) - 0.5) * 2;
        
        return Sound(x,samplerate)
    
            
    @staticmethod
    @check_units(duration=second, samplerate=Hz)
    def pinknoise(duration, samplerate=None, nchannels=1, normalise=False):
        '''
        Returns pink noise, i.e :func:`powerlawnoise` with alpha=1
        '''
        return Sound.powerlawnoise(duration, 1.0, samplerate=samplerate,
                                   nchannels=nchannels, normalise=normalise)
    
    @staticmethod
    @check_units(duration=second, samplerate=Hz)
    def brownnoise(duration, samplerate=None, nchannels=1, normalise=False):
        '''
        Returns brown noise, i.e :func:`powerlawnoise` with alpha=2
        '''
        return Sound.powerlawnoise(duration, 2.0, samplerate=samplerate,
                                   nchannels=nchannels, normalise=normalise)
    
    @staticmethod
    @check_units(duration=second, samplerate=Hz)
    def irns(delay, gain, niter, duration, samplerate=None, nchannels=1):
        '''
        Returns an IRN_S noise. The iterated ripple noise is obtained trough
        a cascade of gain and delay filtering. 
        For more details: see Yost 1996 or chapter 15 in Hartman Sound Signal Sensation.
        '''
        if nchannels!=1:
            raise ValueError("nchannels!=1 not supported.")
        samplerate = get_samplerate(samplerate)
        noise=Sound.whitenoise(duration)
        splrate=noise.samplerate
        x=array(noise.T)[0]
        IRNfft=np.fft.fft(x)
        Nspl,spl_dur=len(IRNfft),float(1.0/splrate)
        w=2*pi*fftfreq(Nspl,spl_dur)
        d=float(delay)
        for k in range(1,niter+1):
            nchoosek=factorial(niter)/(factorial(niter-k)*factorial(k))
            IRNfft+=nchoosek*(gain**k)*IRNfft*exp(-1j*w*k*d)
        IRNadd = np.fft.ifft(IRNfft)
        x=real(IRNadd)
        return Sound(x,samplerate)
    
    @staticmethod
    @check_units(duration=second, samplerate=Hz)
    def irno(delay, gain, niter, duration, samplerate=None, nchannels=1):
        '''
        Returns an IRN_O noise. The iterated ripple noise is obtained many attenuated and
        delayed version of the original broadband noise. 
        For more details: see Yost 1996 or chapter 15 in Hartman Sound Signal Sensation.
        '''
        samplerate = get_samplerate(samplerate)
        noise=Sound.whitenoise(duration)
        splrate=noise.samplerate
        x=array(noise.T)[0]
        IRNadd=np.fft.fft(x)
        Nspl,spl_dur=len(IRNadd),float(1.0/splrate)
        w=2*pi*fftfreq(Nspl,spl_dur)
        d=float(delay)
        for k in range(1,niter+1):
            IRNadd+=(gain**k)*IRNadd*exp(-1j*w*k*d)
        IRNadd = np.fft.ifft(IRNadd)
        x=real(IRNadd)
        return Sound(x, samplerate)

    @staticmethod
    @check_units(duration=second, samplerate=Hz)
    def click(duration, peak=None, samplerate=None, nchannels=1):
        '''
        Returns a click of the given duration.
        
        If ``peak`` is not specified, the amplitude will be 1, otherwise
        ``peak`` refers to the peak dB SPL of the click, according to the
        formula ``28e-6*10**(peak/20.)``.
        '''
        samplerate = get_samplerate(samplerate)
        duration = get_duration(duration,samplerate)
        if peak is not None:
            if not isinstance(peak, dB_type):
                raise dB_error('Peak must be given in dB')
            amplitude = 28e-6*10**(float(peak)/20.)
        else:
            amplitude = 1
        x = amplitude*ones((duration,nchannels))
        return Sound(x, samplerate)
    
    @staticmethod
    @check_units(duration=second, samplerate=Hz)
    def clicks(duration, n, interval, peak=None, samplerate=None, nchannels=1):
        '''
        Returns a series of n clicks (see :func:`click`) separated by interval.
        '''
        oneclick = Sound.click(duration, peak=peak, samplerate=samplerate)
        return oneclick[:interval].repeat(n)

    @staticmethod
    @check_units(duration=second, samplerate=Hz)
    def silence(duration, samplerate=None, nchannels=1):
        '''
        Returns a silent, zero sound for the given duration. Set nchannels to set the number of channels.
        '''
        samplerate = get_samplerate(samplerate)
        duration = get_duration(duration,samplerate)
        x=numpy.zeros((duration,nchannels))
        return Sound(x, samplerate)

    @staticmethod
    @check_units(pitch=Hz, duration=second, samplerate=Hz)
    def vowel(vowel=None, formants=None, pitch=100*Hz, duration=1*second,
          samplerate=None, nchannels=1):
        '''
        Returns an artifically created spoken vowel sound (following the 
        source-filter model of speech production) with a given ``pitch``.
        
        The vowel can be specified by either providing ``vowel`` as a string
        ('a', 'i' or 'u') or by setting ``formants`` to a sequence of formant
        frequencies.
        
        The returned sound is normalized to a maximum amplitude of 1.
        
        The implementation is based on the MakeVowel function written by Richard
        O. Duda, part of the Auditory Toolbox for Matlab by Malcolm Slaney:
        http://cobweb.ecn.purdue.edu/~malcolm/interval/1998-010/                
        '''    
        
        samplerate = get_samplerate(samplerate)
        duration = get_duration(duration, samplerate)
        
        if not (vowel or formants):
            raise ValueError('Need either a vowel or a list of formants')
        elif (vowel and formants):
            raise ValueError('Cannot use both vowel and formants')
            
        if vowel:
            if vowel == 'a' or vowel == '/a/':
                formants = (730.0*Hz, 1090.0*Hz, 2440.0*Hz)
            elif vowel == 'i' or vowel == '/i/':
                formants = (270.0*Hz, 2290.0*Hz, 3010.0*Hz)
            elif vowel == 'u' or vowel == '/u/':
                formants = (300.0*Hz, 870.0*Hz, 2240.0*Hz)
            else:
                raise ValueError('Unknown vowel: "%s"' % (vowel))            
        
        points = np.arange(0, duration - 1, samplerate / pitch)
            
        indices = np.floor(points).astype(int)
        
        y = np.zeros(duration)
    
        y[indices] = (indices + 1) - points
        y[indices + 1] = points - indices
        
        # model the sound source (periodic glottal excitation)  
        a = np.exp(-250.*Hz * 2 * np.pi / samplerate)
        y = lfilter([1],[1, 0, -a * a], y.copy())
        
        # model the filtering by the vocal tract
        bandwidth = 50.*Hz
        
        for f in formants:
            cft = f / samplerate
            q = f / bandwidth
            rho = np.exp(-np.pi * cft / q)
            theta = 2 * np.pi * cft * np.sqrt(1 - 1/(4.0 * q * q))
            a2 = -2 * rho * np.cos(theta)
            a3 = rho * rho
            y = lfilter([1 + a2 + a3], [1, a2, a3], y.copy()) 
        
        #normalize sound
        data = y / np.max(np.abs(y), axis=0)        
        data.shape = (data.size, 1)
        return Sound(np.tile(data, (nchannels, 1)),  samplerate=samplerate)

    @staticmethod
    def sequence(*args, **kwds):
        '''
        Returns the sequence of sounds in the list sounds joined together
        '''
        samplerate = kwds.pop('samplerate', None)
        if len(kwds):
            raise TypeError('Unexpected keywords to function sequence()')
        sounds = []
        for arg in args:
            if isinstance(arg, (list, tuple)):
                sounds.extend(arg)
            else:
                sounds.append(arg)
        if samplerate is None:
            samplerate = max(s.samplerate for s in sounds)
            rates = unique([int(s.samplerate) for s in sounds])
            if len(rates)>1:
                sounds = tuple(s.resample(samplerate) for s in sounds)
        x = vstack(sounds)
        return Sound(x, samplerate)

    def save(self, filename, normalise=False, samplewidth=2):
        '''
        Save the sound as a WAV.
        
        If the normalise keyword is set to True, the amplitude of the sound will be
        normalised to 1. The samplewidth keyword can be 1 or 2 to save the data as
        8 or 16 bit samples.
        '''
        ext = filename.split('.')[-1].lower()
        if ext=='wav':
            import wave as sndmodule
        elif ext=='aiff' or ext=='aifc':
            import aifc as sndmodule
            raise NotImplementedError('Can only save as wav soundfiles')
        else:
            raise NotImplementedError('Can only save as wav soundfiles')
        
        if samplewidth != 1 and samplewidth != 2:
            raise ValueError('Sample width must be 1 or 2 bytes.')
        
        scale = {2:2 ** 15, 1:2 ** 7-1}[samplewidth]
        if ext=='wav':
            meanval = {2:0, 1:2**7}[samplewidth]
            dtype = {2:int16, 1:uint8}[samplewidth]
            typecode = {2:'h', 1:'B'}[samplewidth]
        else:
            meanval = {2:0, 1:2**7}[samplewidth]
            dtype = {2:int16, 1:uint8}[samplewidth]
            typecode = {2:'h', 1:'B'}[samplewidth]
        w = sndmodule.open(filename, 'wb')
        w.setnchannels(self.nchannels)
        w.setsampwidth(samplewidth)
        w.setframerate(int(self.samplerate))
        x = array(self,copy=True)
        am=amax(x)
        z = zeros(x.shape[0]*self.nchannels, dtype=x.dtype)
        x.shape=(x.shape[0],self.nchannels)
        for i in range(self.nchannels):
            if normalise:
                x[:,i] /= am
            x[:,i] = (x[:,i]) * scale + meanval
            z[i::self.nchannels] = x[::1,i]
        data = array(z, dtype=dtype)
        data = pyarray.array(typecode, data)
        w.writeframes(data.tostring())
        w.close()
    
    @staticmethod
    def load(filename):
        '''
        Load the file given by filename and returns a Sound object. 
        Sound file can be either a .wav or a .aif file.
        '''
        ext = filename.split('.')[-1].lower()
        if ext=='wav':
            import wave as sndmodule
        elif ext=='aif' or ext=='aiff':
            import aifc as sndmodule
        else:
            raise NotImplementedError('Can only load aif or wav soundfiles')
        wav = sndmodule.open(filename, "r")
        nchannels, sampwidth, framerate, nframes, comptype, compname = wav.getparams()
        frames = wav.readframes(nframes * nchannels)
        typecode = {2:'h', 1:'B'}[sampwidth]
        out = frombuffer(frames, dtype=dtype(typecode))
        scale = {2:2 ** 15, 1:2 ** 7-1}[sampwidth]
        meanval = {2:0, 1:2**7}[sampwidth]
        
        data = zeros((nframes, nchannels))
        for i in range(nchannels):
            data[:, i] = out[i::nchannels]
            data[:, i] /= scale
            data[:, i] -= meanval
        
        return Sound(data, samplerate=framerate*Hz)

    def __repr__(self):
        arrayrep = repr(asarray(self))
        arrayrep = '\n'.join('    '+l for l in arrayrep.split('\n'))
        return 'Sound(\n'+arrayrep+',\n    '+repr(self.samplerate)+')'
    
    def __str__(self):
        return 'Sound duration %s, channels %s, samplerate %s' % (self.duration,
                                                                  self.nchannels,
                                                                  self.samplerate)

    def __reduce__(self):
        return (_load_Sound_from_pickle, (asarray(self), float(self.samplerate)))


def _load_Sound_from_pickle(arr, samplerate):
    return Sound(arr, samplerate=samplerate*Hz)

def play(*sounds, **kwds):
    '''
    Plays a sound or sequence of sounds. For example::
    
        play(sound)
        play(sound1, sound2)
        play([sound1, sound2, sound3])
        
    If ``normalise=True``, the sequence of sounds will be normalised to the
    maximum range (-1 to 1), and if ``sleep=True`` the function will wait
    until the sounds have finished playing before returning.
    '''
    normalise = kwds.pop('normalise', False)
    sleep = kwds.pop('sleep', False)
    if len(kwds):
        raise TypeError('Unexpected keyword arguments to function play()')
    sound = sequence(*sounds)
    sound.play(normalise=normalise, sleep=sleep)
play.__doc__ = Sound.play.__doc__

def savesound(sound, filename, normalise=False, samplewidth=2):
    sound.save(filename, normalise=normalise, samplewidth=samplewidth)
savesound.__doc__ = Sound.save.__doc__

def get_duration(duration,samplerate):
    if not isinstance(duration, int):
        duration = int(rint(duration * samplerate))
    return duration


whitenoise = Sound.whitenoise
powerlawnoise = Sound.powerlawnoise
pinknoise = Sound.pinknoise
brownnoise = Sound.brownnoise
irns = Sound.irns
irno = Sound.irno
tone = Sound.tone
harmoniccomplex = Sound.harmoniccomplex
click = Sound.click
clicks = Sound.clicks
silence = Sound.silence
sequence = Sound.sequence
vowel = Sound.vowel
loadsound = Sound.load