/usr/share/pyshared/brian/directcontrol.py is in python-brian 1.4.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 | # ----------------------------------------------------------------------------------
# Copyright ENS, INRIA, CNRS
# Contributors: Romain Brette (brette@di.ens.fr) and Dan Goodman (goodman@di.ens.fr)
#
# Brian is a computer program whose purpose is to simulate models
# of biological neural networks.
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
# ----------------------------------------------------------------------------------
#
"""Direct controlling mechanisms
NeuronGroups and callable objects which allow direct
control over the behaviour of neurons.
"""
__all__ = ['SpikeGeneratorGroup', 'PulsePacket',
'PoissonGroup', 'OfflinePoissonGroup', 'PoissonInput']
from neurongroup import *
from threshold import *
from stateupdater import *
from units import *
import random as pyrandom
from numpy import where, array, zeros, ones, inf, nonzero, tile, sum, isscalar,\
cumsum, hstack, bincount, ceil, ndarray, ascontiguousarray
from copy import copy
from clock import guess_clock
from utils.approximatecomparisons import *
import warnings
from operator import itemgetter
from log import *
import numpy
from numpy.random import exponential, randint, binomial
from connections import Connection
from itertools import izip
class SpikeGeneratorGroup(NeuronGroup):
"""Emits spikes at given times
Initialised as::
SpikeGeneratorGroup(N,spiketimes[,clock[,period]])
with arguments:
``N``
The number of neurons in the group.
``spiketimes``
An object specifying which neurons should fire and when. It can be a container
such as a ``list``, containing tuples ``(i,t)`` meaning neuron ``i`` fires at
time ``t``, or a callable object which returns such a container (which
allows you to use generator objects even though this is slower, see below). ``i`` can be an integer
or an array (list of neurons that spike at the same time).
If ``spiketimes`` is not a list or tuple, the pairs ``(i,t)`` need to be
sorted in time. You can also pass a numpy array
``spiketimes`` where the first column of the array
is the neuron indices, and the second column is the times in
seconds. Alternatively you can pass a tuple with two arrays, the first one being the neuron indices and the second one times. WARNING: units are not checked in this case, the time array should be in seconds.
``clock``
An optional clock to update with (omit to use the default clock).
``period``
Optionally makes the spikes recur periodically with the given
period. Note that iterator objects cannot be used as the ``spikelist``
with a period as they cannot be reinitialised.
``gather=False``
Set to True if you want to gather spike events that fall in the same
timestep. (Deprecated since Brian 1.3.1)
``sort=True``
Set to False if your spike events are already sorted.
Has an attribute:
``spiketimes``
This can be used to reset the list of spike times, however the values of
``N``, ``clock`` and ``period`` cannot be changed.
**Sample usages**
The simplest usage would be a list of pairs ``(i,t)``::
spiketimes = [(0,1*ms), (1,2*ms)]
SpikeGeneratorGroup(N,spiketimes)
A more complicated example would be to pass a generator::
import random
def nextspike():
nexttime = random.uniform(0*ms,10*ms)
while True:
yield (random.randint(0,9),nexttime)
nexttime = nexttime + random.uniform(0*ms,10*ms)
P = SpikeGeneratorGroup(10,nextspike())
This would give a neuron group ``P`` with 10 neurons, where a random one
of the neurons fires at an average rate of one every 5ms. Please note that as of 1.3.1, this behavior is preserved but will run slower than initializing with arrays, or lists.
**Notes**
Note that if a neuron fires more than one spike in a given interval ``dt``, additional
spikes will be discarded. A warning will be issued if this
is detected.
Also, if you want to use a SpikeGeneratorGroup with many spikes and/or neurons, please use an initialization with arrays.
Also note that if you pass a generator, then reinitialising the group will not have the
expected effect because a generator object cannot be reinitialised. Instead, you should
pass a callable object which returns a generator. In the example above, that would be
done by calling::
P = SpikeGeneratorGroup(10,nextspike)
Whenever P is reinitialised, it will call ``nextspike()`` to create the required spike
container.
"""
def __init__(self, N, spiketimes, clock=None, period=None,
sort=True, gather=None):
clock = guess_clock(clock)
self.N = N
self.period = period
if gather:
log_warn('brian.SpikeGeneratorGroup', 'SpikeGeneratorGroup\'s gather keyword use is deprecated')
fallback = False # fall back on old SpikeGeneratorThreshold or not
if isinstance(spiketimes, list):
# spiketimes is a list of (i,t)
if len(spiketimes):
idx, times = zip(*spiketimes)
else:
idx, times = [], []
# the following try ... handles the case where spiketimes has index arrays
# e.g spiketimes = [([0, 1], 0 * msecond), ([0, 1, 2], 2 * msecond)]
# Notes:
# - if there is always the same number of indices by array, its simple, it's just a matter of flattening
# - if not, then it requires a for loop, and it's done in the except
try:
idx = array(idx, dtype = float)
times = array(times, dtype = float)
if idx.ndim > 1:
# simple case
times = tile(times.reshape((len(times), 1)), (idx.shape[1], 1)).flatten()
idx = idx.flatten()
except ValueError:
new_idx = []
new_times = []
for k, item in enumerate(idx):
if isinstance(item, list):
new_idx += item # append indices
new_times += [times[k]]*len(item)
else:
new_times += [times[k]]
new_idx += [item]
idx = array(new_idx, dtype = float)
times = new_times
times = array(times, dtype = float)
elif isinstance(spiketimes, tuple):
# spike times is a tuple with idx, times in arrays
idx = spiketimes[0]
times = spiketimes[1]
elif isinstance(spiketimes, ndarray):
# spiketimes is a ndarray, with first col is index and second time
idx = spiketimes[:,0]
times = spiketimes[:,1]
else:
log_warn('brian.SpikeGeneratorGroup', 'Using (slow) threshold because spiketimes is assumed to be a generator/iterator')
# spiketimes is a callable object, so falling back on old SpikeGeneratorThreshold
fallback = True
if not fallback:
thresh = FastSpikeGeneratorThreshold(N, idx, times, dt=clock.dt, period=period)
else:
thresh = SpikeGeneratorThreshold(N, spiketimes, period=period, sort=sort)
if not hasattr(self, '_initialized'):
NeuronGroup.__init__(self, N, model=LazyStateUpdater(), threshold=thresh, clock=clock)
self._initialized = True
else:
self._threshold = thresh
def reinit(self):
super(SpikeGeneratorGroup, self).reinit()
self._threshold.reinit()
def get_spiketimes(self):
return self._threshold.spiketimes
def set_spiketimes(self, values):
self.__init__(self.N, values, period = self.period)
# changed due to the 2.5 issue
spiketimes = property(get_spiketimes, set_spiketimes)
class FastSpikeGeneratorThreshold(Threshold):
'''
A faster version of the SpikeGeneratorThreshold where spikes are processed prior to the run (offline). It replaces the SpikeGeneratorThreshold as of 1.3.1.
'''
## Notes:
# - N is ignored (should it not?)
def __init__(self, N, addr, timestamps, dt = None, period=None):
self.set_offsets(addr, timestamps, dt = dt)
self.period = period
self.dt = dt
self.reinit()
def set_offsets(self, I, T, dt = 1000):
# Convert times into integers
T = array(ceil(T/dt), dtype=int)
# Put them into order
# We use a field array to sort first by time and then by neuron index
spikes = zeros(len(I), dtype=[('t', int), ('i', int)])
spikes['t'] = T
spikes['i'] = I
spikes.sort(order=('t', 'i'))
T = ascontiguousarray(spikes['t'])
self.I = ascontiguousarray(spikes['i'])
# Now for each timestep, we find the corresponding segment of I with
# the spike indices for that timestep.
# The idea of offsets is that the segment offsets[t]:offsets[t+1]
# should give the spikes with time t, i.e. T[offsets[t]:offsets[t+1]]
# should all be equal to t, and so then later we can return
# I[offsets[t]:offsets[t+1]] at time t. It might take a bit of thinking
# to see why this works. Since T is sorted, and bincount[i] returns the
# number of elements of T equal to i, then j=cumsum(bincount(T))[t]
# gives the first index in T where T[j]=t.
if len(T):
self.offsets = hstack((0, cumsum(bincount(T))))
else:
self.offsets = array([])
def __call__(self, P):
t = P.clock.t
if self.period is not None:
cp = int(t / self.period)
if cp > self.curperiod:
self.reinit()
self.curperiod = cp
t = t - cp * self.period
dt = P.clock.dt
t = int(round(t/dt))
if t+1>=len(self.offsets):
return array([], dtype=int)
return self.I[self.offsets[t]:self.offsets[t+1]]
def reinit(self):
self.curperiod = -1
@property
def spiketimes(self):
# this is a pain to do! retrieve spike times from offsets
res = []
for k in range(len(self.offsets)-1):
idx = self.I[self.offsets[k]:self.offsets[k+1]]
ts = [k*self.dt]*len(idx)
res += zip(idx, ts)
return res
def __repr__(self):
return '<FastSpikeGeneratorThreshold>'
def __str__(self):
return 'Fast threshold mechanism for the SpikeGenerator group'
class SpikeGeneratorThreshold(Threshold):
"""
Old threshold object for the SpikeGeneratorGroup
**Notes**
This version of the SpikeGeneratorThreshold object is deprecated, since version 1.3.1 of Brian it has been replaced in most cases by the FastSpikeGeneratorThreshold.
This is kept only as a fallback object for when a SpikeGeneratorGroup object is initialized with a generator or an iterator object (see the doc for SpikeGeneratorGroup for more details). Please note that since this implementation is slower, using a static data structure as an input to a SpikeGeneratorGroup is advised.
"""
def __init__(self, N, spiketimes, period=None, sort=True):
self.set_spike_times(N, spiketimes, period=period, sort=sort)
def reinit(self):
def makeiter(obj):
if callable(obj): return iter(obj())
return iter(obj)
self.spiketimeiter = makeiter(self.spiketimes)
try:
self.nextspikenumber, self.nextspiketime = self.spiketimeiter.next()
except StopIteration:
self.nextspiketime = None
self.nextspikenumber = 0
self.curperiod = -1
def set_spike_times(self, N, spiketimes, period=None, sort=True):
# N is the number of neurons, spiketimes is an iterable object of tuples (i,t) where
# t is the spike time, and i is the neuron number. If spiketimes is a list or tuple,
# then it will be sorted here.
if isinstance(spiketimes, (list, tuple)) and sort:
spiketimes = sorted(spiketimes, key=itemgetter(1))
self.spiketimes = spiketimes
self.N = N
self.period = period
self.reinit()
def __call__(self, P):
firing = zeros(self.N)
t = P.clock.t
if self.period is not None:
cp = int(t / self.period)
if cp > self.curperiod:
self.reinit()
self.curperiod = cp
t = t - cp * self.period
if isinstance(self.spiketimes, numpy.ndarray):
t = float(t)
while self.nextspiketime is not None and is_approx_less_than_or_equal(self.nextspiketime, t):
if type(self.nextspikenumber)==int and firing[self.nextspikenumber]:
log_warn('brian.SpikeGeneratorThreshold', 'Discarding multiple overlapping spikes')
firing[self.nextspikenumber] = 1
try:
self.nextspikenumber, self.nextspiketime = self.spiketimeiter.next()
except StopIteration:
self.nextspiketime = None
return where(firing)[0]
# The output of this function is fed into SpikeGeneratorGroup, consisting of
# time sorted pairs (t,i) where t is when neuron i fires
@check_units(t=second, n=1, sigma=second)
def PulsePacketGenerator(t, n, sigma):
times = [pyrandom.gauss(t, sigma) for i in range(n)]
times.sort()
neuron = range(n)
pyrandom.shuffle(neuron)
return zip(neuron, times)
class PulsePacket(SpikeGeneratorGroup):
"""
Fires a Gaussian distributed packet of n spikes with given spread
**Initialised as:** ::
PulsePacket(t,n,sigma[,clock])
with arguments:
``t``
The mean firing time
``n``
The number of spikes in the packet
``sigma``
The standard deviation of the firing times.
``clock``
The clock to use (omit to use default or local clock)
**Methods**
This class is derived from :class:`SpikeGeneratorGroup` and has all its
methods as well as one additional method:
.. method:: generate(t,n,sigma)
Change the parameters and/or generate a new pulse packet.
"""
@check_units(t=second, n=1, sigma=second)
def __init__(self, t, n, sigma, clock=None):
self.clock = guess_clock(clock)
self.generate(t, n, sigma)
def reinit(self):
super(PulsePacket, self).reinit()
self._threshold.reinit()
@check_units(t=second, n=1, sigma=second)
def generate(self, t, n, sigma):
SpikeGeneratorGroup.__init__(self, n, PulsePacketGenerator(t, n, sigma), self.clock)
def __repr__(self):
return "Pulse packet neuron group"
class PoissonGroup(NeuronGroup):
'''
A group that generates independent Poisson spike trains.
**Initialised as:** ::
PoissonGroup(N,rates[,clock])
with arguments:
``N``
The number of neurons in the group
``rates``
A scalar, array or function returning a scalar or array.
The array should have the same length as the number of
neurons in the group. The function should take one
argument ``t`` the current simulation time.
``clock``
The clock which the group will update with, do not
specify to use the default clock.
'''
def __init__(self, N, rates=0 * hertz, clock=None):
'''
Initializes the group.
P.rates gives the rates.
'''
NeuronGroup.__init__(self, N, model=LazyStateUpdater(), threshold=PoissonThreshold(),
clock=clock)
if callable(rates): # a function is passed
self._variable_rate = True
self.rates = rates
self._S0[0] = self.rates(self.clock.t)
else:
self._variable_rate = False
self._S[0, :] = rates
self._S0[0] = rates
self.var_index = {'rate':0}
def update(self):
if self._variable_rate:
self._S[0, :] = self.rates(self.clock.t)
NeuronGroup.update(self)
class OfflinePoissonGroup(object): # This is weird, there is only an init method
def __init__(self, N, rates, T):
"""
Generates a Poisson group with N spike trains and given rates over the
time window [0,T].
"""
if isscalar(rates):
rates = rates * ones(N)
totalrate = sum(rates)
isi = exponential(1 / totalrate, T * totalrate * 2)
spikes = cumsum(isi)
spikes = spikes[spikes <= T]
neurons = randint(0, N, len(spikes))
self.spiketimes = zip(neurons, spikes)
# Used in PoissonInput below
class EmptyGroup(object):
def __init__(self, clock):
self.clock = clock
def get_spikes(self, delay):
return None
class PoissonInput(Connection):
"""
Adds a Poisson input to a NeuronGroup. Allows to efficiently simulate a large number of
independent Poisson inputs to a NeuronGroup variable, without simulating every synapse
individually. The synaptic events are generated randomly during the simulation and
are not preloaded and stored in memory (unless record=True is used).
All the inputs must target the same variable, have the same frequency and same synaptic
weight. You can use as many PoissonInput objects as you want, even targetting a same NeuronGroup.
There is the possibility to consider time jitter in the presynaptic spikes, and
synaptic unreliability. The inputs can also be recorded if needed. Finally, all
neurons from the NeuronGroup receive independent realizations of Poisson spike trains,
except if the keyword freeze=True is used, in which case all neurons receive the same
Poisson input.
**Initialised as:** ::
PoissonInput(target[, N][, rate][, weight][, state][, jitter][, reliability][, copies][, record][, freeze])
with arguments:
``target``
The target :class:`NeuronGroup`
``N``
The number of independent Poisson inputs
``rate``
The rate of each Poisson process
``weight``
The synaptic weight
``state``
The name or the index of the synaptic variable of the :class:`NeuronGroup`
``jitter``
is ``None`` by default. There is the possibility to consider ``copies`` presynaptic
spikes at each Poisson event, randomly shifted according to an exponential law
with parameter ``jitter=taujitter`` (in second).
``reliability``
is ``None`` by default. There is the possibility to consider ``copies`` presynaptic
spikes at each Poisson event, where each of these spikes is unreliable, i.e. it occurs
with probability ``jitter=alpha`` (between 0 and 1).
``copies``
The number of copies of each Poisson event. This is identical to ``weight=copies*w``, except
if ``jitter`` or ``reliability`` are specified.
``record``
``True`` if the input has to be recorded. In this case, the recorded events are
stored in the ``recorded_events`` attribute, as a list of pairs ``(i,t)`` where ``i`` is the
neuron index and ``t`` is the event time.
``freeze``
``True`` if the input must be the same for all neurons of the :class:`NeuronGroup`
"""
_record = []
def __init__(self, target, N=None, rate=None, weight=None, state=None,
jitter=None, reliability=None, copies=1,
record=False, freeze=False):
self.source = EmptyGroup(target.clock)
self.target = target
self.N = len(self.target)
self.clock = target.clock
self.delay = None
self.iscompressed = True
self.delays = None # delay to wait for the j-th synchronous spike to occur after the last sync event, for target neuron i
self.lastevent = -inf * ones(self.N) # time of the last event for target neuron i
self.events = []
self.recorded_events = []
self.n = N
self.rate = rate
self.w = weight
self.var = state
self._jitter = jitter
if jitter is not None:
self.delays = zeros((copies, self.N))
self.reliability = reliability
self.copies = copies
self.record = record
self.frozen = freeze
if (jitter is not None) and (reliability is not None):
raise Exception("Specifying both jitter and reliability is currently not supported.")
if isinstance(state, str): # named state variable
self.index = self.target.get_var_index(state)
else:
self.index = state
def get_jitter(self):
return self._jitter
def set_jitter(self, value):
self._jitter = value
if value is not None:
self.delays = zeros((self.copies, self.N))
# changed due to the 2.5 issue
jitter = property(get_jitter, set_jitter)
def propagate(self, spikes):
i = 0
n = self.n
f = self.rate
w = self.w
var = self.var
jitter = self.jitter
reliability = self.reliability
record = self.record
frozen = self.frozen
state = self.index
if (jitter==None) and (reliability==None):
if frozen:
rnd = binomial(n=n, p=f * self.clock.dt)
self.target._S[state, :] += w * rnd
if rnd > 0:
self.events.append(self.clock.t)
else:
rnd = binomial(n=n, p=f * self.clock.dt, size=(self.N))
self.target._S[state, :] += w * rnd
ind = nonzero(rnd>0)[0]
if record and len(ind)>0:
self.recorded_events.append((ind[0], self.clock.t))
elif (jitter is not None):
p = self.copies
taujitter = jitter
if (p > 0) & (f > 0):
k = binomial(n=n, p=f * self.clock.dt, size=(self.N)) # number of synchronous events here, for every target neuron
syncneurons = (k > 0) # neurons with a syncronous event here
self.lastevent[syncneurons] = self.clock.t
if taujitter == 0.0:
self.delays[:, syncneurons] = zeros((p, sum(syncneurons)))
else:
self.delays[:, syncneurons] = exponential(scale=taujitter, size=(p, sum(syncneurons)))
# Delayed spikes occur now
lastevent = tile(self.lastevent, (p, 1))
b = (abs(self.clock.t - (lastevent + self.delays)) <= (self.clock.dt / 2) * ones((p, self.N))) # delayed spikes occurring now
weff = sum(b, axis=0) * w
self.target._S[state, :] += weff
elif (reliability is not None):
p = self.copies
alpha = reliability
if (p > 0) & (alpha > 0):
weff = w * binomial(n=p, p=alpha)
self.target._S[state, :] += weff * binomial(n=n, p=f * self.clock.dt, size=(self.N))
def _test():
import doctest
doctest.testmod()
if __name__ == "__main__":
_test()
|