/usr/share/doc/pythia8-doc/html/HiddenValleyProcesses.html is in pythia8-doc-html 8.1.86-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 | <html>
<head>
<title>Hidden Valley Processes</title>
<link rel="stylesheet" type="text/css" href="pythia.css"/>
<link rel="shortcut icon" href="pythia32.gif"/>
</head>
<body>
<h2>Hidden Valley Processes</h2>
This Hidden Valley (HV) scenario has been developed specifically
to allow the study of visible consequences of radiation in a
hidden sector, by recoil effect. A key aspect is therefore that
the normal timelike showering machinery has been expanded with a
third kind of radiation, in addition to the QCD and QED ones.
These three kinds of radiation are fully interleaved, i.e.
evolution occurs in a common <i>pT</i>-ordered sequence.
The scenario is described in [<a href="Bibliography.html" target="page">Car10</a>]. Furthermore
hadronization in the hidden sector has been implemented.
Three main scenarios for production into and decay out of the
hidden sector can be compared, in each case either for an
Abelian or a non-Abelian gauge group in the HV. For further details
see [<a href="Bibliography.html" target="page">Car11</a>].
<h3>Particle content and properties</h3>
For simplicity we assume that the HV contains an unbroken <b>SU(N)</b>
gauge symmetry. This is used in the calculation of production cross
sections. These could be rescaled by hand for other gauge groups.
<p/><code>mode </code><strong> HiddenValley:Ngauge </strong>
(<code>default = <strong>3</strong></code>; <code>minimum = 1</code>)<br/>
is <b>U(1)</b> for <code>Ngauge = 1</code>, is <b>SU(N)</b> if
<code>Ngauge > 1</code>. Note that pair production cross sections
contains a factor of <code>Ngauge</code> for new particles
in the fundamental representation of this group.
<p/>
A minimal HV particle content has been introduced. Firstly, there is
a set of 12 particles that mirrors the Standard Model flavour
structure, and is charged under both the SM and the HV symmetry groups.
Each new particle couples flavour-diagonally to a corresponding SM
state, and has the same SM charge and colour, but in addition is in
the fundamental representation of the HV colour, as follows:
<br/><code>Dv</code>, identity 4900001, partner to the normal
<code>d</code> quark;
<br/><code>Uv</code>, identity 4900002, partner to the normal
<code>u</code> quark;
<br/><code>Sv</code>, identity 4900003, partner to the normal
<code>s</code> quark;
<br/><code>Cv</code>, identity 4900004, partner to the normal
<code>c</code> quark;
<br/><code>Bv</code>, identity 4900005, partner to the normal
<code>b</code> quark;
<br/><code>Tv</code>, identity 4900006, partner to the normal
<code>t</code> quark;
<br/><code>Ev</code>, identity 4900011, partner to the normal
<code>e</code> lepton;
<br/><code>nuEv</code>, identity 4900012, partner to the normal
<code>nue</code> neutrino;
<br/><code>MUv</code>, identity 4900013, partner to the normal
<code>mu</code> lepton;
<br/><code>nuMUv</code>, identity 4900014, partner to the normal
<code>numu</code> neutrino;
<br/><code>TAUv</code>, identity 4900015, partner to the normal
<code>tau</code> lepton;
<br/><code>nuTAUv</code>, identity 4900016, partner to the normal
<code>nutau</code> neutrino.
<br/>Collectively we will refer to these states as <code>Fv</code>;
note, however, that they need not be fermions themselves.
<p/>
In addition the model contains the HV gauge particle, either
a HV-gluon or a HV-photon, but not both; see <code>Ngauge</code>
above:
<br/><code>gv</code>, identity 4900021, is the massless
gauge boson of the HV <b>SU(N)</b> group;
<br/><code>gammav</code>, identity 4900022, is the massless
gauge boson of the HV <b>U(1)</b> group.
<p/>
Finally, for the basic HV scenario, there is a new massive particle
with only HV charge sitting in the fundamental representation of the
HV gauge group:
<br/><code>qv</code>, identity 4900101.
<p/>The typical scenario would be for pair production of one of the
states presented first above, e.g. <i>g g → Dv Dvbar</i>.
Such a <i>Dv</i> can radiate gluons and photons like an SM quark,
but in addition HV-gluons or HV-photons in a similar fashion.
Eventually the <i>Dv</i> will decay like <i>Dv → d + qv</i>.
The strength of this decay is not set as such, but is implicit in
your choice of width for the <i>Dv</i> state. Thereafter the
<i>d</i> and <i>qv</i> can radiate further within their
respective sectors. The <i>qv</i>, <i>gv</i> or <i>gammav</i>
are invisible, so their fate need not be considered further.
<p/>
While not part of the standard scenario, as an alternative there is
also a kind of <i>Z'</i> resonance:
<br/><code>Zv</code>, identity 4900023, a boson that can couple
both to pairs of Standard Model fermions and to <i>qv qvbar</i>
pairs. Mass, total width and branching ratios can be set as convenient.
<br/>This opens up for alternative processes
<i>l^+l^-, q qbar → Zv → qv qvbar</i>.
<p/>
The possibility of a leakage back from the hidden sector will be
considered in the Hadronization section below. For the <b>U(1)</b>
case the <i>gammav</i> acquires a mass and can decay back to a
Standard-Model fermion pair, while the <i>qv</i> remains invisible.
The <b>SU(N)</b> alternative remains unbroken, so confinement holds
and the <i>gv</i> is massless. A string like
<i>qv - gv - ... - gv - qvbar</i> can break by the production of
new <i>qv - qvbar</i> pairs, which will produce <i>qv-qvbar</i>
mesons. It would be possible to build a rather sophisticated hidden
sector by trivial extensions of the HV flavour content. For now,
however, the <i>qv</i> can be duplicated in up to eight copies
with the same properties except for the flavour charge. These are
assigned codes 4900101 - 4900108. This gives a total of 64 possible
lowest-lying mesons. We also include a duplication of that, into two
multiplets, corresponding to the pseudoscalar and vector mesons of
QCD. For now, again, these are assumed to have the same mass and
other properties. Only the flavour-diagonal ones can decay back into
the Standard-Model sector, however, while the rest remains in the
hidden sector. It is therefore only necessary to distinguish a few
states:
<br/><code>pivDiag</code>, identity 4900111, a flavour-diagonal
HV-meson with spin 0 that can decay back into the Standard-Model sector;
<br/><code>rhovDiag</code>, identity 4900113, a flavour-diagonal
HV-meson with spin 1 that can decay back into the Standard-Model sector;
<br/><code>pivUp</code>, identity 4900211, an off-diagonal
HV-meson with spin 0 that is stable and invisible, with an antiparticle
<code>pivDn</code> with identity -4900211; the particle is
the one where the code of the flavour is larger than that of the
antiflavour;
<br/><code>rhovUp</code>, identity 4900213, an off-diagonal
HV-meson with spin 1 that is stable and invisible, with an antiparticle
<code>rhovDn</code> with identity -4900213; again the particle is
the one where the code of the flavour is larger than that of the
antiflavour;
<br/><code>ggv</code>, identity 4900991, is only rarely used,
to handle cases where it is kinematically impossible to produce an
HV-meson on shell, and it therefore is assumed to de-excite by the
emission of invisible <i>gv-gv </i> v-glueball bound states.
<p/>
Only the spin of the HV-gluon or HV-photon is determined unambiguously
to be unity, for the others you can make your choice.
<p/><code>mode </code><strong> HiddenValley:spinFv </strong>
(<code>default = <strong>1</strong></code>; <code>minimum = 0</code>; <code>maximum = 2</code>)<br/>
The spin of the HV partners of the SM fermions, e.g.
<i>Dv</i>, <i>Uv</i>, <i>Ev</i> and <i>nuEv</i>.
<br/><code>option </code><strong> 0</strong> : spin 0.
<br/><code>option </code><strong> 1</strong> : spin 1/2.
<br/><code>option </code><strong> 2</strong> : spin 1.
<p/><code>mode </code><strong> HiddenValley:spinqv </strong>
(<code>default = <strong>0</strong></code>; <code>minimum = 0</code>; <code>maximum = 1</code>)<br/>
The spin of <i>qv</i> when the <i>Fv</i> (the HV partners of
the SM fermions) have spin 1/2. (While, if they have spin 0 or 1,
the <i>qv</i> spin is fixed at 1/2.)
<br/><code>option </code><strong> 0</strong> : spin 0.
<br/><code>option </code><strong> 1</strong> : spin 1.
<p/><code>parm </code><strong> HiddenValley:kappa </strong>
(<code>default = <strong>1.</strong></code>)<br/>
If the <i>Fv</i> have spin 1 then their production
cross section depends on the presence of anomalous magnetic dipole
moment, i.e. of a <i>kappa</i> different from unity. For other spins
this parameter is not used.
<p/><code>flag </code><strong> HiddenValley:doKinMix </strong>
(<code>default = <strong>off</strong></code>)<br/>
allow kinematic mixing or not.
<p/><code>parm </code><strong> HiddenValley:kinMix </strong>
(<code>default = <strong>1.</strong></code>)<br/>
strength of kinetic mixing.
<p/>
You should set the <i>Fv</i> and <i>qv</i> masses appropriately,
with the latter smaller than the former two to allow decays.
When <b>U(1)</b> hadronization is switched on, you need to set the
<i>gammav</i> mass and decay modes. For <b>SU(N)</b> hadronization
the HV-meson masses should be set to match the <i>qv</i> ones.
The simplest is to assume that <i>m_qv</i> defines a constituent
mass, so that <i>m_HVmeson = 2 m_qv</i>. The <i>hvMesonDiag</i>
decay modes also need to be set.
<h3>Production processes</h3>
<p/><code>flag </code><strong> HiddenValley:all </strong>
(<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of all hard Hidden Valley processes,
as listed separately in the following.
<p/><code>flag </code><strong> HiddenValley:gg2DvDvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>g g → Dv Dvbar</i>.
Code 4901.
<p/><code>flag </code><strong> HiddenValley:gg2UvUvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>g g → Uv Uvbar</i>.
Code 4902.
<p/><code>flag </code><strong> HiddenValley:gg2SvSvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>g g → Sv Svbar</i>.
Code 4903.
<p/><code>flag </code><strong> HiddenValley:gg2CvCvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>g g → Cv Cvbar</i>.
Code 4904.
<p/><code>flag </code><strong> HiddenValley:gg2BvBvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>g g → Bv Bvbar</i>.
Code 4905.
<p/><code>flag </code><strong> HiddenValley:gg2TvTvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>g g → Tv Tvbar</i>.
Code 4906.
<p/><code>flag </code><strong> HiddenValley:qqbar2DvDvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>q qbar → Dv Dvbar</i>
via intermediate gluon.
Code 4911.
<p/><code>flag </code><strong> HiddenValley:qqbar2UvUvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>q qbar → Uv Uvbar</i>
via intermediate gluon.
Code 4912.
<p/><code>flag </code><strong> HiddenValley:qqbar2SvSvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>q qbar → Sv Svbar</i>
via intermediate gluon.
Code 4913.
<p/><code>flag </code><strong> HiddenValley:qqbar2CvCvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>q qbar → Cv Cvbar</i>
via intermediate gluon.
Code 4914.
<p/><code>flag </code><strong> HiddenValley:qqbar2BvBvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>q qbar → Bv Bvbar</i>
via intermediate gluon.
Code 4915.
<p/><code>flag </code><strong> HiddenValley:qqbar2TvTvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>q qbar → Tv Tvbar</i>
via intermediate gluon.
Code 4916.
<p/><code>flag </code><strong> HiddenValley:ffbar2DvDvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>f fbar → Dv Dvbar</i>
via intermediate <i>gamma*/Z^*</i>.
Code 4921.
<p/><code>flag </code><strong> HiddenValley:ffbar2UvUvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>f fbar → Uv Uvbar</i>
via intermediate <i>gamma*/Z^*</i>.
Code 4922.
<p/><code>flag </code><strong> HiddenValley:ffbar2SvSvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>f fbar → Sv Svbar</i>
via intermediate <i>gamma*/Z^*</i>.
Code 4923.
<p/><code>flag </code><strong> HiddenValley:ffbar2CvCvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>f fbar → Cv Cvbar</i>
via intermediate <i>gamma*/Z^*</i>.
Code 4924.
<p/><code>flag </code><strong> HiddenValley:ffbar2BvBvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>f fbar → Bv Bvbar</i>
via intermediate <i>gamma*/Z^*</i>.
Code 4925.
<p/><code>flag </code><strong> HiddenValley:ffbar2TvTvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>f fbar → Tv Tvbar</i>
via intermediate <i>gamma*/Z^*</i>.
Code 4926.
<p/><code>flag </code><strong> HiddenValley:ffbar2EvEvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>f fbar → Ev Evbar</i>
via intermediate <i>gamma*/Z^*</i>.
Code 4931.
<p/><code>flag </code><strong> HiddenValley:ffbar2nuEvnuEvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>f fbar → nuEv nuEvbar</i>
via intermediate <i>gamma*/Z^*</i>.
Code 4932.
<p/><code>flag </code><strong> HiddenValley:ffbar2MUvMUvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>f fbar → MUv MUvbar</i>
via intermediate <i>gamma*/Z^*</i>.
Code 4933.
<p/><code>flag </code><strong> HiddenValley:ffbar2nuMUvnuMUvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>f fbar → nuMUv nuMUvbar</i>
via intermediate <i>gamma*/Z^*</i>.
Code 4934.
<p/><code>flag </code><strong> HiddenValley:ffbar2TAUvTAUvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>f fbar → TAUv TAUvbar</i>
via intermediate <i>gamma*/Z^*</i>.
Code 4935.
<p/><code>flag </code><strong> HiddenValley:ffbar2nuTAUvnuTAUvbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Pair production <i>f fbar → nuTAUv nuTAUvbar</i>
via intermediate <i>gamma*/Z^*</i>.
Code 4936.
<p/><code>flag </code><strong> HiddenValley:ffbar2Zv </strong>
(<code>default = <strong>off</strong></code>)<br/>
Production <i>f fbar → Zv</i> where <i>Zv</i> is a generic
resonance that couples both SM fermion pairs and a <i>qv qvbar</i>
pair. Not part of the framework of the above processes, but as an
alternative. Code 4941.
<h3>Timelike showers</h3>
One key point of this HV scenario is that radiation off the
HV-charged particles is allowed. This is done by the standard
final-state showering machinery. (HV particles are not produced
in initial-state radiation.) All the (anti)particles <i>Fv</i>
and <i>qv</i> have one (negative) unit of HV charge. That is,
radiation closely mimics the one in QCD. Both QCD, QED and HV
radiation are interleaved in one common sequence of decreasing
emission <i>pT</i> scales. Each radiation kind defines a set of
dipoles, usually spanned between a radiating parton and its recoil
partner, such that the invariant mass of the pair is not changed
when a radiation occurs. This need not follow from trivial colour
assignments, but is often obvious. For instance, in a decay
<i>Qv → q + qv</i> the QCD dipole is between the <i>q</i> and
the hole after <i>Qv</i>, but <i>qv</i> becomes the recoiler
should a radiation occur, while the role of <i>q</i> and <i>qv</i>
is reversed for HV radiation.
<p/>This also includes matrix-element corrections for a number
of decay processes, with colour, spin and mass effects included
[<a href="Bibliography.html" target="page">Nor01</a>]. They were calculated within the context of the
particle content of the MSSM, however, which does not include spin 1
particles with unit colour charge. In such cases spin 0 is assumed
instead. By experience, the main effects come from mass and colour
flow anyway, so this is not a bad approximation. (Furthermore the
MSSM formulae allow for <i>gamma_5</i> factors from wave
functions or vertices; these are even less important.)
<p/>An emitted <i>gv</i> can branch in its turn,
<i>gv → gv + gv</i>. This radiation may affect momenta
in the visible sector by recoil effect, but this is a minor
effect relative to the primary emission of the <i>gv</i>.
<p/><code>flag </code><strong> HiddenValley:FSR </strong>
(<code>default = <strong>off</strong></code>)<br/>
switch on final-state shower of <i>gv</i> or <i>gammav</i>
in a HV production process.
<p/><code>parm </code><strong> HiddenValley:alphaFSR </strong>
(<code>default = <strong>0.1</strong></code>; <code>minimum = 0.0</code>)<br/>
fixed alpha scale of <i>gv/gammav</i> emission; corresponds to
<i>alpha_strong</i> of QCD or <i>alpha_em</i> of QED. For
shower branchings such as <i>Dv → Dv + gv</i> the coupling is
multiplied by <i>C_F = (N^2 - 1) / (2 * N)</i> for an
<b>SU(N)</b> group and for <i>gv → gv + gv</i> by <i>N</i>.
<p/><code>parm </code><strong> HiddenValley:pTminFSR </strong>
(<code>default = <strong>0.4</strong></code>; <code>minimum = 0.1</code>)<br/>
lowest allowed <i>pT</i> of emission. Chosen with same default
as in normal QCD showers.
<h3>Hadronization</h3>
By default the HV particles with no Standard Model couplings
are not visible. Their presence can only be deduced by the
observation of missing (transverse) momentum in the event as a
whole. In the current implementation it is possible to simulate
two different scenarios where activity can leak back from the
hidden sector.
<p/>
The first possibility is relevant for the <b>U(1)</b> scenario.
The <b>U(1)</b> group may be broken, so that the <i>gammav</i>
acquires a mass. Furthermore, the <i>gammav</i> may have a
small mixing angle with the normal photon, or with some <i>Z'</i>
state or other mediator, and may thus decay back into Standard
Model particles. The <i>qv</i> still escapes undetected;
recall that there is no confinement in the <b>U(1)</b> option.
<p/>
In order to enable this machinery two commands are necessary,
<code>4900022:m0 = ...</code> to set the <i>gammav</i> mass
to the desired value, and <code>4900022:onMode = on</code> to enable
<i>gammav</i> decays. The default <i>gammav</i> decay
table contains all Standard Model fermion-antifermion pairs,
except top, with branching ratios in proportion to their coupling
to the photon, whenever the production channel is allowed by
kinematics. This table could easily be tailored to more specific
models and needs. For instance, for a mass below 1 - 2 GeV, it
would make sense to construct a table of exclusive hadronic decay
channels rather than go the way via a hadronizing quark pair.
<p/>
The <i>gammav</i> are expected to decay so rapidly that no
secondary vertex will be detectable. However, it is possible to
set <code>4900022:tau0</code> to a finite lifetime (in mm) that
will be used to create separated secondary vertices.
<p/>
The second, more interesting, possibility is relevant for the
<b>SU(N)</b> scenarios. Here the gauge group remains unbroken, i.e.
<i>gv</i> is massless, and the partons are confined. Like in
QCD, the HV-partons can therefore be arranged in one single
HV-colour-ordered chain, with a <i>qv</i> in one end, a
<i>qvbar</i> in the other, and a varying number of
<i>gv</i> in between. Each event will only contain (at most)
one such string, (i) since perturbative branchings
<i>gv → qv qvbar</i> have been neglected, as is a reasonable
approximation for QCD, and (ii) since HV-colours are assigned in the
<i>N_C → infinity</i> limit, just like in the handling of
string fragmentation in QCD. The HV-string can then fragment by the
nonperturbative creation of <i>qv qvbar</i> pairs, leading to
the formation of HV-mesons along the string, each with its
<i>qv</i> from one vertex and its <i>qvbar</i> from
the neighbouring one.
<p/>
Since, so far, we have only assumed there to be one <i>qv</i>
species, all produced <i>qv qvbar</i> HV-mesons are of the
same flavour-diagonal species. Such an HV-meson can decay back to
the normal sector, typically by whatever mediator particle allowed
production in the first place. In this framework the full energy put
into the HV sector will leak back to the normal one. To allow more
flexibility, an ad hoc possibility of <i>n_Flav</i> different
<i>qv</i> species is introduced. For now they are all assumed
to have the same mass and other properties, but distinguished by
some flavour-like property. Only the flavour-diagonal ones can decay,
meaning that only a fraction (approximately) <i>1/n_Flav</i> of the
HV-energy leaks back, while the rest remains in the hidden sector.
<p/>
This scenario contains more parameters than the first one, for the
<b>U(1)</b> group. They can be subdivided into two sets. One is
related to particle properties, both for <i>qv</i> and for the
two different kinds of HV-mesons, here labeled 4900111 and 4900113
for the diagonal ones, and +-4900211 and +-4900213 for the
off-diagonal ones. It makes sense to set the HV-meson masses to be
twice the <i>qv</i> one, as in a simple constituent mass context.
Furthermore the <i>hvMesonDiag</i> decay modes need to be set up.
Like with the
<i>gammav</i> in the <b>U(1)</b> option, the default decay table
is based on the branching ratios of an off-shell photon.
<p/>
The second set are fragmentation parameters that extend or replace
the ones used in normal string fragmentation. Some of them are not
encoded in the same way as normally, however, but rather scale as
the <i>qv</i> mass is changed, so as to keep a sensible default
behaviour. This does not mean that deviations from this set should
not be explored, or that other scaling rules could be preferred
within alternative scenarios. These parameters are as follows.
<p/><code>flag </code><strong> HiddenValley:fragment </strong>
(<code>default = <strong>off</strong></code>)<br/>
switch on string fragmentation of the HV partonic system.
Only relevant for <b>SU(N)</b> scenarios.
<p/><code>mode </code><strong> HiddenValley:nFlav </strong>
(<code>default = <strong>1</strong></code>; <code>minimum = 1</code>; <code>maximum = 8</code>)<br/>
number of different flavours assumed to exist in the hadronization
description, leading to approximately <i>1/n_Flav</i> of the
produced HV-mesons being flavour-diagonal and capable to decay back
to Standard Model particles.
<p/><code>parm </code><strong> HiddenValley:probVector </strong>
(<code>default = <strong>0.75</strong></code>; <code>minimum = 0.</code>; <code>maximum = 1.</code>)<br/>
fraction of HV-mesons that are assigned spin 1 (vector), with the
remainder spin 0 (pseudoscalar). Assuming the <i>qv</i> have
spin <i>1/2</i> and the mass splitting is small, spin counting
predicts that <i>3/4</i> of the mesons should have spin 1.
<p/><code>parm </code><strong> HiddenValley:aLund </strong>
(<code>default = <strong>0.3</strong></code>; <code>minimum = 0.0</code>; <code>maximum = 2.0</code>)<br/>
The <i>a</i> parameter of the Lund symmetric fragmentation function.
See the normal <a href="Fragmentation.html" target="page">fragmentation
function</a> description for the shape of this function.
<p/><code>parm </code><strong> HiddenValley:bmqv2 </strong>
(<code>default = <strong>0.8</strong></code>; <code>minimum = 0.2</code>; <code>maximum = 2.0</code>)<br/>
The <i>b</i> parameter of the Lund symmetric fragmentation function,
multiplied by the square of the <i>qv</i> mass. This scaling ensures
that the fragmentation function keeps the same shape when the
<i>qv</i> mass is changed (neglecting transverse momenta).
<p/><code>parm </code><strong> HiddenValley:rFactqv </strong>
(<code>default = <strong>1.0</strong></code>; <code>minimum = 0.0</code>; <code>maximum = 2.0</code>)<br/>
<i>r_qv</i>, i.e. the Bowler correction factor to the Lund symmetric
fragmentation function, which could be made weaker or stronger than
its natural value.
<p/><code>parm </code><strong> HiddenValley:sigmamqv </strong>
(<code>default = <strong>0.5</strong></code>; <code>minimum = 0.0</code>)<br/>
the width <i>sigma</i> of transverse momenta in the HV fragmentation
process, normalized to the <i>qv</i> mass. This ensures that
<i>sigma</i> scales proportionately to <i>m_qv</i>.
See the normal <a href="Fragmentation.html" target="page">fragmentation
<i>pT</i></a> description for conventions for factors of 2.
</body>
</html>
<!-- Copyright (C) 2014 Torbjorn Sjostrand -->
|