/usr/lib/open-axiom/input/fr.input is in open-axiom-test 1.5.0~svn3056+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | --Copyright The Numerical Algorithms Group Limited 1991.
-- Manipulation of factored integers
)clear all
(x,y,z,w): FR INT
-- automatic coercion of integers to factored integers
x := 2**8 * 78**7 * 111**3 * 74534
y := 2**4 * 45**3 * 162**6 * 774325
-- computation of 50!
z1 := factorial 50
z := z1 :: (FR INT)
-- examine the structure if a factor
nthFactor(z,1)
nthFlag(z,1)
nthExponent(z,1)
-- extract the factors in another form
factorList z
-- construct an object that has the factors to multiplicity one
r:=reduce(*,[(nthFactor(z,i) :: (FR INT)) for i in 1..(numberOfFactors z)])
-- some arithmetic
exquo(z,r)
x*y
y*x
(x*y = y*x) :: BOOLEAN
gcd(x,z)
x+y
-- this is how you multiply the terms together
expand(x+y)
-- now look at quotients
f := x/y
g := (x ** 9) / y
f * g
(f * g) / (g * primeFactor(2,200))
(f * g) / (g * primeFactor(2,200)) * z
--% Manipulation of factored polynomials
)clear all
)set history on
(u,v,w): FR POLY INT
-- coercion to FR POLY INT involves factoring
u := (x**4 - y**4) :: POLY INT
-- primeFactor creates factors that are asserted to be prime
v := primeFactor(x-y,2) * primeFactor(x+y,2) * primeFactor(x**2 + y**2,1)
w := factor(x**2 + 2*x*y + 2*x + 2*y + y**2 + 1) * primeFactor(x-y,2)
unit w
-- some ways of looking at the components of an elements of FR P I
l := factorList u
factorList v
factorList w
l.1.fctr
l.1.xpnt
nthFactor(u,1)
nthFactor(u,2)
nthFactor(u,3)
nthExponent(u,3)
nthFlag(u,3)
nthFactor(u,4)
-- this computes a factored object that is similar to v except that
-- each factor occurs with multiplicity 1
s:=reduce(*,[(nthFactor(v,i) :: FR POLY INT) for i in 1..(numberOfFactors v)])
-- some arithmetic
exquo(v,s)
gcd(u,v)
u + v
lcm(v,w)
u * v * w
-- "expand" multiplies the factors together
expand(u * v * w)
-- some quotients
u/w
w/(u*v)
-- %%(-1) is the last result, %%(-2) is the one before that
w/(u*v) * u/w
w/(u*v) + u/w
differentiate(w,x)
differentiate(w,y)
associates?(x,-x)
characteristic()$FR POLY INT
1$FR POLY INT
0$FR POLY INT
|