This file is indexed.

/usr/share/octave/packages/splines-1.2.7/csaps_sel.m is in octave-splines 1.2.7-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
## Copyright (C) 2012 Nir Krakauer
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn{Function File}{[@var{yi} @var{p} @var{sigma2},@var{unc_y}] =} csaps_sel(@var{x}, @var{y}, @var{xi}, @var{w}=[], @var{crit}=[])
## @deftypefnx{Function File}{[@var{pp} @var{p} @var{sigma2},@var{unc_y}] =} csaps_sel(@var{x}, @var{y}, [], @var{w}=[], @var{crit}=[])
##
## Cubic spline approximation with smoothing parameter estimation @*
## Approximately interpolates [@var{x},@var{y}], weighted by @var{w} (inverse variance; if not given, equal weighting is assumed), at @var{xi}.
##
## The chosen cubic spline with natural boundary conditions @var{pp}(@var{x}) minimizes @var{p} Sum_i @var{w}_i*(@var{y}_i - @var{pp}(@var{x}_i))^2  +  (1-@var{p}) Int @var{pp}''(@var{x}) d@var{x}.
##
## A selection criterion @var{crit} is used to find a suitable value for @var{p} (between 0 and 1); possible values for @var{crit} are  `vm' (Vapnik's measure [Cherkassky and Mulier 2007] from statistical learning theory); `aicc' (corrected Akaike information criterion, the default); `aic' (original Akaike information criterion); `gcv' (generalized cross validation).
##
## If @var{crit} is a nonnegative scalar instead of a string, then @var{p} is chosen to so that the mean square scaled residual Mean_i (@var{w}_i*(@var{y}_i - @var{pp}(@var{x}_i))^2) is approximately equal to @var{crit}. If @var{crit} is a negative scalar, then @var{p} is chosen so that the effective number of degrees of freedom in the spline fit (which ranges from 2 when @var{p} = 0 to @var{n} when @var{p} = 1) is approximately equal to -@var{crit}.
##
## @var{x} and @var{w} should be @var{n} by 1 in size; @var{y} should be @var{n} by @var{m}; @var{xi} should be @var{k} by 1; the values in @var{x} should be distinct and in ascending order; the values in @var{w} should be nonzero.
##
## Returns the selected @var{p}, the estimated data scatter (variance from the smooth trend) @var{sigma2}, and the estimated uncertainty (SD) of the smoothing spline fit at each @var{x} value, @var{unc_y}.
##
## For small @var{n}, the optimization uses singular value decomposition of an @var{n} by @var{n} matrix  in order to quickly compute the residual size and model degrees of freedom for many @var{p} values for the optimization (Craven and Wahba 1979). For large @var{n} (currently >300), an asymptotically more computation and storage efficient method that takes advantage of the sparsity of the problem's coefficient matrices is used (Hutchinson and de Hoog 1985).
##
## References: 
##
## Vladimir Cherkassky and Filip Mulier (2007), Learning from Data: Concepts, Theory, and Methods. Wiley, Chapter 4
##
## Carl de Boor (1978), A Practical Guide to Splines, Springer, Chapter XIV
##
## Clifford M. Hurvich, Jeffrey S. Simonoff, Chih-Ling Tsai (1998), Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion, J. Royal Statistical Society, 60B:271-293
##
## M. F. Hutchinson and F. R. de Hoog (1985), Smoothing noisy data with spline functions, Numerische Mathematik, 47:99-106
##
## M. F. Hutchinson (1986), Algorithm 642: A fast procedure for calculating minimum cross-validation cubic smoothing splines, ACM Transactions on Mathematical Software, 12:150-153
##
## Grace Wahba (1983), Bayesian ``confidence intervals'' for the cross-validated smoothing spline, J Royal Statistical Society, 45B:133-150
##
## @end deftypefn
## @seealso{csaps, spline, csapi, ppval, dedup, bin_values, gcvspl}

## Author: Nir Krakauer <nkrakauer@ccny.cuny.edu>

function [ret,p,sigma2,unc_y]=csaps_sel(x,y,xi,w,crit)

  if (nargin < 5)
    crit = [];
    if(nargin < 4)
      w = [];
      if(nargin < 3)
        xi = [];
      endif
    endif
  endif

  if(columns(x) > 1)
    x = x';
    y = y';
    w = w';
  endif

  if any (isnan ([x y w](:)) )
    error('NaN values in inputs; pre-process to remove them')
  endif

  h = diff(x);
  if any(h <= 0)
	  error('x must be strictly increasing; pre-process to achieve this')
  endif

  n = numel(x);
  
  if isempty(w)
    w = ones(n, 1);
  end

  if isscalar(crit)
    if crit == 0 || crit <= -n #return an exact cubic spline interpolation
        [ret,p]=csaps(x,y,1,xi,w);
        sigma2 = 0; unc_y = zeros(size(x));
        return
    elseif crit > 0
      w = w ./ crit; #adjust the sample weights so that the target mean square scaled residual is 1
      crit = 'msr_bound';
    else #negative value -- target degrees of freedom of fit
      if crit >= -2 #return linear regression
        p = 0;
      else
        global df_target
        df_target = -crit;
        crit = 'df_bound';
      endif
    endif  
  end	

  if isempty(crit)
    crit = 'aicc';
  end

  R = spdiags([h(2:end) 2*(h(1:end-1) + h(2:end)) h(1:end-1)], [-1 0 1], n-2, n-2);

  QT = spdiags([1 ./ h(1:end-1) -(1 ./ h(1:end-1) + 1 ./ h(2:end)) 1 ./ h(2:end)], [0 1 2], n-2, n);


  chol_method = (n > 300); #use a sparse Cholesky decomposition followed by solving for only the central bands of the inverse to solve for large n (faster), and singular value decomposition for small n (less prone to numerical error if data values are spaced close together)
      
  if chol_method
    penalty_function = @(p) penalty_compute_chol(p, QT, R, y, w, n, crit);
  else
    ##determine influence matrix for different p without repeated inversion
    [U D V] = svd(diag(1 ./ sqrt(w))*QT'*sqrtm(inv(R)), 0); D = diag(D).^2;
    penalty_function = @(p) penalty_compute(p, U, D, y, w, n, crit);
  end

  if ~exist("p", "var")
    ##choose p by minimizing the penalty function

    p = fminbnd(penalty_function, 0, 1);

  endif

  ## estimate the trend uncertainty
  if chol_method
    [MSR, Ht] = penalty_terms_chol(p, QT, R, y, w, n);
    Hd = influence_matrix_diag_chol(p, QT, R, y, w, n);
  else
    H = influence_matrix(p, U, D, n, w);
    [MSR, Ht] = penalty_terms(H, y, w);
    Hd = diag(H);
  end

  sigma2 = mean(MSR(:)) * (n / (n-Ht)); #estimated data error variance (wahba83)
  unc_y = sqrt(sigma2 * Hd ./ w); #uncertainty (SD) of fitted curve at each input x-value (hutchinson86)

  ## construct the fitted smoothing spline 
  [ret,p]=csaps(x,y,p,xi,w);

endfunction



function H = influence_matrix(p, U, D, n, w) #returns influence matrix for given p
  H = speye(n) - U * diag(D ./ (D + (p / (6*(1-p))))) * U';
  H = diag(1 ./ sqrt(w)) * H * diag(sqrt(w)); #rescale to original units	
endfunction	

function [MSR, Ht] = penalty_terms(H, y, w)
  MSR = mean(w .* (y - (H*y)) .^ 2); #mean square residual
  Ht = trace(H); #effective number of fitted parameters
endfunction

function Hd = influence_matrix_diag_chol(p, QT, R, y, w, n)
  #LDL factorization of 6*(1-p)*QT*diag(1 ./ w)*QT' + p*R
  U = chol(6*(1-p)*QT*diag(1 ./ w)*QT' + p*R, 'upper');
  d = 1 ./ diag(U);
  U = diag(d)*U; 
  d = d .^ 2;
  #5 central bands in the inverse of 6*(1-p)*QT*diag(1 ./ w)*QT' + p*R
  Binv = banded_matrix_inverse(d, U, 2);
  Hd = full(diag(speye(n) - (6*(1-p))*diag(1 ./ w)*QT'*Binv*QT));	
endfunction

function [MSR, Ht] = penalty_terms_chol(p, QT, R, y, w, n)
  #LDL factorization of 6*(1-p)*QT*diag(1 ./ w)*QT' + p*R
  U = chol(6*(1-p)*QT*diag(1 ./ w)*QT' + p*R, 'upper');
  d = 1 ./ diag(U);
  U = diag(d)*U; 
  d = d .^ 2;
  Binv = banded_matrix_inverse(d, U, 2); #5 central bands in the inverse of 6*(1-p)*QT*diag(1 ./ w)*QT' + p*R
  Ht = 2 + trace(speye(n-2) - (6*(1-p))*QT*diag(1 ./ w)*QT'*Binv);
  MSR = mean(w .* ((6*(1-p)*diag(1 ./ w)*QT'*((6*(1-p)*QT*diag(1 ./ w)*QT' + p*R) \ (QT*y)))) .^ 2);
endfunction

function J = vm(MSR, Ht, n)
#Vapnik-Chervonenkis penalization factor or Vapnik's measure in cherkassky07, p. 129
  p = Ht/n;
  if p == 0
    J = mean(log(MSR)(:)) - log(1 - sqrt(log(n)/(2*n)));
  elseif n == 0 || (p*(1 - log(p)) + log(n)/(2*n)) >= 1
    J = Inf;
  else
    J = mean(log(MSR)(:)) - log(1 - sqrt(p*(1 - log(p)) + log(n)/(2*n)));
  endif
endfunction

function J = aicc(MSR, Ht, n)
  J = mean(log(MSR)(:)) + 2 * (Ht + 1) / max(n - Ht - 2, 0); #hurvich98, taking the average if there are multiple data sets as in woltring86 
endfunction

function J = aic(MSR, Ht, n)
  J = mean(log(MSR)(:)) + 2 * Ht / n;
endfunction

function J = gcv(MSR, Ht, n)
  J = mean(log(MSR)(:)) - 2 * log(1 - Ht / n);
endfunction

function J = msr_bound(MSR, Ht, n)
  J = mean(MSR(:) - 1) .^ 2;
endfunction

function J = df_bound(MSR, Ht, n)
  global df_target
  J = (Ht - df_target) .^ 2;
endfunction

function J = penalty_compute(p, U, D, y, w, n, crit) #evaluates a user-supplied penalty function crit at given p
  H = influence_matrix(p, U, D, n, w);
  [MSR, Ht] = penalty_terms(H, y, w);
  J = feval(crit, MSR, Ht, n);
  if ~isfinite(J)
    J = Inf;
  endif
endfunction

function J = penalty_compute_chol(p, QT, R, y, w, n, crit) #evaluates a user-supplied penalty function crit at given p
  [MSR, Ht] = penalty_terms_chol(p, QT, R, y, w, n);
  J = feval(crit, MSR, Ht, n);
  if ~isfinite(J)
    J = Inf;
  endif
endfunction

function Binv = banded_matrix_inverse(d, U, m) #given a (2m+1)-banded, symmetric n x n matrix B = U'*inv(diag(d))*U, where U is unit upper triangular with bandwidth (m+1), returns Binv, a sparse symmetric matrix containing the central 2m+1 bands of the inverse of B
#Reference: Hutchinson and de Hoog 1985
  Binv = sparse(diag(d));
  n = rows(U);
  for i = n:(-1):1
    p = min(m, n - i);
    for l = 1:p
      for k = 1:p
        Binv(i, i+l) -= U(i, i+k)*Binv(i + k, i + l);
      end
      Binv(i, i) -= U(i, i+l)*Binv(i, i+l);
    end
    Binv(i+(1:p), i) = Binv(i, i+(1:p))'; #add the lower triangular elements
  end
endfunction

%!shared x,y,ret,p,sigma2,unc_y
%! x = [0:0.01:1]'; y = sin(x);
%! [ret,p,sigma2,unc_y] = csaps_sel(x,y,x);
%!assert (1 - p, 0, 1E-6);
%!assert (sigma2, 0, 1E-10);
%!assert (ret - y, zeros(size(y)), 1E-4);
%!assert (ret, (csaps_sel(x,[y 2*y],x))'(:, 1), 1E-4);
%!assert (unc_y, zeros(size(unc_y)), 1E-5);

%{
#experiments comparing different selection criteria for recovering a function sampled with standard normal noise -- aicc was consistently better than aic, but otherwise which method does best is problem-specific
m = 1; #number of replicates available
ni = 200; #number of evaluation points
ns = [5 10 20 40]; #number of given sample points
nk = 100; #number of trials to average over
f = @(x) sin(2*pi*x); #function generating the synthetic data
mse = nan(4, numel(ns), nk);
for i = 1:numel(ns)
  for k = 1:nk
    n = ns(i);
    x = linspace(0, 1, n)(:);
    y = f(x) + randn(n, m);
    xi = rand(ni, 1);
    yt = f(xi);
    yi = csaps_sel(x,y,xi,[],'vm');
    mse(1, i, k) = meansq((yi - yt')(:));
    yi = csaps_sel(x,y,xi,[],'aicc');
    mse(2, i, k) = meansq((yi - yt')(:));
    yi = csaps_sel(x,y,xi,[],'aic');
    mse(3, i, k) = meansq((yi - yt')(:)); 
    yi = csaps_sel(x,y,xi,[],'gcv');
    mse(4, i, k) = meansq((yi - yt')(:));   
  endfor
endfor
msem = mean(mse, 3);
%}