/usr/share/octave/packages/secs1d-0.0.9/doc-cache is in octave-secs1d 0.0.9-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260  | # Created by Octave 3.6.4, Mon May 20 11:49:16 2013 UTC <root@rama>
# name: cache
# type: cell
# rows: 3
# columns: 5
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
secs1d_dd_gummel_map
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2496
 Solve the scaled stationary bipolar DD equation system using Gummel algorithm.
 [n, p, V, Fn, Fp, Jn, Jp, it, res] = secs1d_dd_gummel_map (x, D, Na, Nd, 
                                                       pin, nin, Vin, Fnin, 
                                                       Fpin, l2, er, u0n, 
                                                       uminn, vsatn, betan, 
                                                       Nrefn, u0p, uminp, vsatp, 
                                                       betap, Nrefp, theta, tn, tp, 
                                                       Cn, Cp, an, ap, Ecritnin, Ecritpin, 
                                                       toll, maxit, ptoll, pmaxit)         
     input: 
            x                        spatial grid
            D, Na, Nd                doping profile
            pin                      initial guess for hole concentration
            nin                      initial guess for electron concentration
            Vin                      initial guess for electrostatic potential
            Fnin                     initial guess for electron Fermi potential
            Fpin                     initial guess for hole Fermi potential
            l2                       scaled Debye length squared
            er                       relative electric permittivity
            u0n, uminn, vsatn, Nrefn electron mobility model coefficients
            u0p, uminp, vsatp, Nrefp hole mobility model coefficients
            theta                    intrinsic carrier density
            tn, tp, Cn, Cp, 
            an, ap, 
            Ecritnin, Ecritpin       generation recombination model parameters
            toll                     tolerance for Gummel iterarion convergence test
            maxit                    maximum number of Gummel iterarions
            ptoll                    convergence test tolerance for the non linear
                                     Poisson solver
            pmaxit                   maximum number of Newton iterarions
     output: 
             n     electron concentration
             p     hole concentration
             V     electrostatic potential
             Fn    electron Fermi potential
             Fp    hole Fermi potential
             Jn    electron current density
             Jp    hole current density
             it    number of Gummel iterations performed
             res   total potential increment at each step
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 Solve the scaled stationary bipolar DD equation system using Gummel algorithm.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
secs1d_dd_newton
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1506
 Solve the scaled stationary bipolar DD equation system using Newton's method.
 [n, p, V, Fn, Fp, Jn, Jp, it, res] = secs1d_dd_newton (x, D, Vin, nin, 
                                                        pin, l2, er, un, 
                                                        up, theta, tn, tp, 
                                                        Cn, Cp, toll, maxit)
     input: 
       x                spatial grid
       D                doping profile
       pin              initial guess for hole concentration
       nin              initial guess for electron concentration
       Vin              initial guess for electrostatic potential
       l2               scaled Debye length squared
       er               relative electric permittivity
       un               electron mobility model coefficients
       up               electron mobility model coefficients
       theta            intrinsic carrier density
       tn, tp, Cn, Cp   generation recombination model parameters
       toll             tolerance for Gummel iterarion convergence test
       maxit            maximum number of Gummel iterarions
     output: 
       n     electron concentration
       p     hole concentration
       V     electrostatic potential
       Fn    electron Fermi potential
       Fp    hole Fermi potential
       Jn    electron current density
       Jp    hole current density
       it    number of Gummel iterations performed
       res   total potential increment at each step
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
 Solve the scaled stationary bipolar DD equation system using Newton's method.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
secs1d_nlpoisson_newton
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1248
 Solve the non-linear Poisson problem using Newton's algorithm.
 [V, n, p, res, niter] = secs1d_nlpoisson_newton (x, sinodes, Vin, nin, pin,
                                                  Fnin, Fpin, D, l2, er, toll, maxit)
     input:  
             x       spatial grid
             sinodes index of the nodes of the grid which are in the semiconductor subdomain
                     (remaining nodes are assumed to be in the oxide subdomain)
             Vin     initial guess for the electrostatic potential
             nin     initial guess for electron concentration
             pin     initial guess for hole concentration
             Fnin    initial guess for electron Fermi potential
             Fpin    initial guess for hole Fermi potential
             D       doping profile
             l2      scaled Debye length squared
             er      relative electric permittivity
             toll    tolerance for convergence test
             maxit   maximum number of Newton iterations
     output: 
             V       electrostatic potential
             n       electron concentration
             p       hole concentration
             res     residual norm at each step
             niter   number of Newton iterations
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
 Solve the non-linear Poisson problem using Newton's algorithm.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
secs1d_physical_constants
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 277
 some useful physical constants 
 Kb       = Boltzman constant
 q        = quantum of charge
 e0       = permittivity of free space
 hplanck  = Plank constant
 hbar     = Plank constant by 2 pi
 mn0      = free electron mass
 T0       = temperature
 Vth 	   = thermal voltage
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
 some useful physical constants 
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
secs1d_silicon_material_properties
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1399
 material properties for silicon and silicon dioxide
 esir       = relative electric permittivity of silicon
 esio2r     = relative electric permittivity of silicon dioxide
 esi 	      = electric permittivity of silicon
 esio2      = electric permittivity of silicon dioxide
 mn         = effective mass of electrons in silicon
 mh         = effective mass of holes in silicon
 
 u0n        = low field electron mobility
 u0p        = low field hole mobility
 uminn      = parameter for doping-dependent electron mobility
 betan      = idem
 Nrefn      = idem
 uminp      = parameter for doping-dependent hole mobility
 betap      = idem
 Nrefp      = idem
 vsatn      = electron saturation velocity
 vsatp      = hole saturation velocity
 tp         = electron lifetime
 tn         = hole lifetime
 Cn         = electron Auger coefficient
 Cp         = hole Auger coefficient
 an         = impact ionization rate for electrons
 ap         = impact ionization rate for holes
 Ecritn     = critical field for impact ionization of electrons
 Ecritp     = critical field for impact ionization of holes 
 Nc         = effective density of states in the conduction band
 Nv         = effective density of states in the valence band
 Egap       = bandgap in silicon
 EgapSio2   = bandgap in silicon dioxide
 
 ni         = intrinsic carrier density
 Phims      = metal to semiconductor potential barrier
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
 material properties for silicon and silicon dioxide
 |