/usr/share/octave/packages/secs1d-0.0.9/doc-cache is in octave-secs1d 0.0.9-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 | # Created by Octave 3.6.4, Mon May 20 11:49:16 2013 UTC <root@rama>
# name: cache
# type: cell
# rows: 3
# columns: 5
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
secs1d_dd_gummel_map
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2496
Solve the scaled stationary bipolar DD equation system using Gummel algorithm.
[n, p, V, Fn, Fp, Jn, Jp, it, res] = secs1d_dd_gummel_map (x, D, Na, Nd,
pin, nin, Vin, Fnin,
Fpin, l2, er, u0n,
uminn, vsatn, betan,
Nrefn, u0p, uminp, vsatp,
betap, Nrefp, theta, tn, tp,
Cn, Cp, an, ap, Ecritnin, Ecritpin,
toll, maxit, ptoll, pmaxit)
input:
x spatial grid
D, Na, Nd doping profile
pin initial guess for hole concentration
nin initial guess for electron concentration
Vin initial guess for electrostatic potential
Fnin initial guess for electron Fermi potential
Fpin initial guess for hole Fermi potential
l2 scaled Debye length squared
er relative electric permittivity
u0n, uminn, vsatn, Nrefn electron mobility model coefficients
u0p, uminp, vsatp, Nrefp hole mobility model coefficients
theta intrinsic carrier density
tn, tp, Cn, Cp,
an, ap,
Ecritnin, Ecritpin generation recombination model parameters
toll tolerance for Gummel iterarion convergence test
maxit maximum number of Gummel iterarions
ptoll convergence test tolerance for the non linear
Poisson solver
pmaxit maximum number of Newton iterarions
output:
n electron concentration
p hole concentration
V electrostatic potential
Fn electron Fermi potential
Fp hole Fermi potential
Jn electron current density
Jp hole current density
it number of Gummel iterations performed
res total potential increment at each step
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Solve the scaled stationary bipolar DD equation system using Gummel algorithm.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
secs1d_dd_newton
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1506
Solve the scaled stationary bipolar DD equation system using Newton's method.
[n, p, V, Fn, Fp, Jn, Jp, it, res] = secs1d_dd_newton (x, D, Vin, nin,
pin, l2, er, un,
up, theta, tn, tp,
Cn, Cp, toll, maxit)
input:
x spatial grid
D doping profile
pin initial guess for hole concentration
nin initial guess for electron concentration
Vin initial guess for electrostatic potential
l2 scaled Debye length squared
er relative electric permittivity
un electron mobility model coefficients
up electron mobility model coefficients
theta intrinsic carrier density
tn, tp, Cn, Cp generation recombination model parameters
toll tolerance for Gummel iterarion convergence test
maxit maximum number of Gummel iterarions
output:
n electron concentration
p hole concentration
V electrostatic potential
Fn electron Fermi potential
Fp hole Fermi potential
Jn electron current density
Jp hole current density
it number of Gummel iterations performed
res total potential increment at each step
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Solve the scaled stationary bipolar DD equation system using Newton's method.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
secs1d_nlpoisson_newton
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1248
Solve the non-linear Poisson problem using Newton's algorithm.
[V, n, p, res, niter] = secs1d_nlpoisson_newton (x, sinodes, Vin, nin, pin,
Fnin, Fpin, D, l2, er, toll, maxit)
input:
x spatial grid
sinodes index of the nodes of the grid which are in the semiconductor subdomain
(remaining nodes are assumed to be in the oxide subdomain)
Vin initial guess for the electrostatic potential
nin initial guess for electron concentration
pin initial guess for hole concentration
Fnin initial guess for electron Fermi potential
Fpin initial guess for hole Fermi potential
D doping profile
l2 scaled Debye length squared
er relative electric permittivity
toll tolerance for convergence test
maxit maximum number of Newton iterations
output:
V electrostatic potential
n electron concentration
p hole concentration
res residual norm at each step
niter number of Newton iterations
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Solve the non-linear Poisson problem using Newton's algorithm.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
secs1d_physical_constants
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 277
some useful physical constants
Kb = Boltzman constant
q = quantum of charge
e0 = permittivity of free space
hplanck = Plank constant
hbar = Plank constant by 2 pi
mn0 = free electron mass
T0 = temperature
Vth = thermal voltage
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
some useful physical constants
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
secs1d_silicon_material_properties
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1399
material properties for silicon and silicon dioxide
esir = relative electric permittivity of silicon
esio2r = relative electric permittivity of silicon dioxide
esi = electric permittivity of silicon
esio2 = electric permittivity of silicon dioxide
mn = effective mass of electrons in silicon
mh = effective mass of holes in silicon
u0n = low field electron mobility
u0p = low field hole mobility
uminn = parameter for doping-dependent electron mobility
betan = idem
Nrefn = idem
uminp = parameter for doping-dependent hole mobility
betap = idem
Nrefp = idem
vsatn = electron saturation velocity
vsatp = hole saturation velocity
tp = electron lifetime
tn = hole lifetime
Cn = electron Auger coefficient
Cp = hole Auger coefficient
an = impact ionization rate for electrons
ap = impact ionization rate for holes
Ecritn = critical field for impact ionization of electrons
Ecritp = critical field for impact ionization of holes
Nc = effective density of states in the conduction band
Nv = effective density of states in the valence band
Egap = bandgap in silicon
EgapSio2 = bandgap in silicon dioxide
ni = intrinsic carrier density
Phims = metal to semiconductor potential barrier
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
material properties for silicon and silicon dioxide
|