/usr/share/doc/octave-htmldoc/interpreter/Special-Functions.html is in octave-htmldoc 3.8.2-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Octave: Special Functions</title>
<meta name="description" content="GNU Octave: Special Functions">
<meta name="keywords" content="GNU Octave: Special Functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Arithmetic.html#Arithmetic" rel="up" title="Arithmetic">
<link href="Rational-Approximations.html#Rational-Approximations" rel="next" title="Rational Approximations">
<link href="Utility-Functions.html#Utility-Functions" rel="prev" title="Utility Functions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Special-Functions"></a>
<div class="header">
<p>
Next: <a href="Rational-Approximations.html#Rational-Approximations" accesskey="n" rel="next">Rational Approximations</a>, Previous: <a href="Utility-Functions.html#Utility-Functions" accesskey="p" rel="prev">Utility Functions</a>, Up: <a href="Arithmetic.html#Arithmetic" accesskey="u" rel="up">Arithmetic</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Special-Functions-1"></a>
<h3 class="section">17.6 Special Functions</h3>
<a name="XREFairy"></a><dl>
<dt><a name="index-airy"></a>Built-in Function: <em>[<var>a</var>, <var>ierr</var>] =</em> <strong>airy</strong> <em>(<var>k</var>, <var>z</var>, <var>opt</var>)</em></dt>
<dd><p>Compute Airy functions of the first and second kind, and their
derivatives.
</p>
<div class="example">
<pre class="example"> K Function Scale factor (if "opt" is supplied)
--- -------- ---------------------------------------
0 Ai (Z) exp ((2/3) * Z * sqrt (Z))
1 dAi(Z)/dZ exp ((2/3) * Z * sqrt (Z))
2 Bi (Z) exp (-abs (real ((2/3) * Z * sqrt (Z))))
3 dBi(Z)/dZ exp (-abs (real ((2/3) * Z * sqrt (Z))))
</pre></div>
<p>The function call <code>airy (<var>z</var>)</code> is equivalent to
<code>airy (0, <var>z</var>)</code>.
</p>
<p>The result is the same size as <var>z</var>.
</p>
<p>If requested, <var>ierr</var> contains the following status information and
is the same size as the result.
</p>
<ol>
<li> Normal return.
</li><li> Input error, return <code>NaN</code>.
</li><li> Overflow, return <code>Inf</code>.
</li><li> Loss of significance by argument reduction results in less than half
of machine accuracy.
</li><li> Complete loss of significance by argument reduction, return <code>NaN</code>.
</li><li> Error—no computation, algorithm termination condition not met,
return <code>NaN</code>.
</li></ol>
</dd></dl>
<a name="XREFbesselj"></a><dl>
<dt><a name="index-besselj"></a>Built-in Function: <em>[<var>j</var>, <var>ierr</var>] =</em> <strong>besselj</strong> <em>(<var>alpha</var>, <var>x</var>, <var>opt</var>)</em></dt>
<dt><a name="index-bessely"></a>Built-in Function: <em>[<var>y</var>, <var>ierr</var>] =</em> <strong>bessely</strong> <em>(<var>alpha</var>, <var>x</var>, <var>opt</var>)</em></dt>
<dt><a name="index-besseli"></a>Built-in Function: <em>[<var>i</var>, <var>ierr</var>] =</em> <strong>besseli</strong> <em>(<var>alpha</var>, <var>x</var>, <var>opt</var>)</em></dt>
<dt><a name="index-besselk"></a>Built-in Function: <em>[<var>k</var>, <var>ierr</var>] =</em> <strong>besselk</strong> <em>(<var>alpha</var>, <var>x</var>, <var>opt</var>)</em></dt>
<dt><a name="index-besselh"></a>Built-in Function: <em>[<var>h</var>, <var>ierr</var>] =</em> <strong>besselh</strong> <em>(<var>alpha</var>, <var>k</var>, <var>x</var>, <var>opt</var>)</em></dt>
<dd><p>Compute Bessel or Hankel functions of various kinds:
</p>
<dl compact="compact">
<dt><code>besselj</code></dt>
<dd><p>Bessel functions of the first kind. If the argument <var>opt</var> is supplied,
the result is multiplied by <code>exp (-abs (imag (<var>x</var>)))</code>.
</p>
</dd>
<dt><code>bessely</code></dt>
<dd><p>Bessel functions of the second kind. If the argument <var>opt</var> is supplied,
the result is multiplied by <code>exp (-abs (imag (<var>x</var>)))</code>.
</p>
</dd>
<dt><code>besseli</code></dt>
<dd>
<p>Modified Bessel functions of the first kind. If the argument <var>opt</var> is
supplied, the result is multiplied by <code>exp (-abs (real (<var>x</var>)))</code>.
</p>
</dd>
<dt><code>besselk</code></dt>
<dd>
<p>Modified Bessel functions of the second kind. If the argument <var>opt</var> is
supplied, the result is multiplied by <code>exp (<var>x</var>)</code>.
</p>
</dd>
<dt><code>besselh</code></dt>
<dd><p>Compute Hankel functions of the first (<var>k</var> = 1) or second (<var>k</var>
= 2) kind. If the argument <var>opt</var> is supplied, the result is multiplied
by <code>exp (-I*<var>x</var>)</code> for <var>k</var> = 1 or <code>exp (I*<var>x</var>)</code> for
<var>k</var> = 2.
</p></dd>
</dl>
<p>If <var>alpha</var> is a scalar, the result is the same size as <var>x</var>.
If <var>x</var> is a scalar, the result is the same size as <var>alpha</var>.
If <var>alpha</var> is a row vector and <var>x</var> is a column vector, the
result is a matrix with <code>length (<var>x</var>)</code> rows and
<code>length (<var>alpha</var>)</code> columns. Otherwise, <var>alpha</var> and
<var>x</var> must conform and the result will be the same size.
</p>
<p>The value of <var>alpha</var> must be real. The value of <var>x</var> may be
complex.
</p>
<p>If requested, <var>ierr</var> contains the following status information
and is the same size as the result.
</p>
<ol>
<li> Normal return.
</li><li> Input error, return <code>NaN</code>.
</li><li> Overflow, return <code>Inf</code>.
</li><li> Loss of significance by argument reduction results in less than
half of machine accuracy.
</li><li> Complete loss of significance by argument reduction, return <code>NaN</code>.
</li><li> Error—no computation, algorithm termination condition not met,
return <code>NaN</code>.
</li></ol>
</dd></dl>
<a name="XREFbeta"></a><dl>
<dt><a name="index-beta"></a>Mapping Function: <em></em> <strong>beta</strong> <em>(<var>a</var>, <var>b</var>)</em></dt>
<dd><p>For real inputs, return the Beta function,
</p>
<div class="example">
<pre class="example">beta (a, b) = gamma (a) * gamma (b) / gamma (a + b).
</pre></div>
<p><strong>See also:</strong> <a href="#XREFbetaln">betaln</a>, <a href="#XREFbetainc">betainc</a>.
</p></dd></dl>
<a name="XREFbetainc"></a><dl>
<dt><a name="index-betainc"></a>Mapping Function: <em></em> <strong>betainc</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>Return the regularized incomplete Beta function,
</p>
<div class="smallexample">
<pre class="smallexample"> x
1 /
betainc (x, a, b) = ----------- | t^(a-1) (1-t)^(b-1) dt.
beta (a, b) /
t=0
</pre></div>
<p>If <var>x</var> has more than one component, both <var>a</var> and <var>b</var> must be
scalars. If <var>x</var> is a scalar, <var>a</var> and <var>b</var> must be of
compatible dimensions.
</p>
<p><strong>See also:</strong> <a href="#XREFbetaincinv">betaincinv</a>, <a href="#XREFbeta">beta</a>, <a href="#XREFbetaln">betaln</a>.
</p></dd></dl>
<a name="XREFbetaincinv"></a><dl>
<dt><a name="index-betaincinv"></a>Mapping Function: <em></em> <strong>betaincinv</strong> <em>(<var>y</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>Compute the inverse of the incomplete Beta function, i.e., <var>x</var> such that
</p>
<div class="example">
<pre class="example"><var>y</var> == betainc (<var>x</var>, <var>a</var>, <var>b</var>)
</pre></div>
<p><strong>See also:</strong> <a href="#XREFbetainc">betainc</a>, <a href="#XREFbeta">beta</a>, <a href="#XREFbetaln">betaln</a>.
</p></dd></dl>
<a name="XREFbetaln"></a><dl>
<dt><a name="index-betaln"></a>Mapping Function: <em></em> <strong>betaln</strong> <em>(<var>a</var>, <var>b</var>)</em></dt>
<dd><p>Return the natural logarithm of the Beta function,
</p>
<div class="example">
<pre class="example">betaln (a, b) = log (beta (a, b))
</pre></div>
<p>calculated in a way to reduce the occurrence of underflow.
</p>
<p><strong>See also:</strong> <a href="#XREFbeta">beta</a>, <a href="#XREFbetainc">betainc</a>, <a href="#XREFgammaln">gammaln</a>.
</p></dd></dl>
<a name="XREFbincoeff"></a><dl>
<dt><a name="index-bincoeff"></a>Mapping Function: <em></em> <strong>bincoeff</strong> <em>(<var>n</var>, <var>k</var>)</em></dt>
<dd><p>Return the binomial coefficient of <var>n</var> and <var>k</var>, defined as
</p>
<div class="example">
<pre class="example"> / \
| n | n (n-1) (n-2) … (n-k+1)
| | = -------------------------
| k | k!
\ /
</pre></div>
<p>For example:
</p>
<div class="example">
<pre class="example">bincoeff (5, 2)
⇒ 10
</pre></div>
<p>In most cases, the <code>nchoosek</code> function is faster for small
scalar integer arguments. It also warns about loss of precision for
big arguments.
</p>
<p><strong>See also:</strong> <a href="Basic-Statistical-Functions.html#XREFnchoosek">nchoosek</a>.
</p></dd></dl>
<a name="XREFcommutation_005fmatrix"></a><dl>
<dt><a name="index-commutation_005fmatrix"></a>Function File: <em></em> <strong>commutation_matrix</strong> <em>(<var>m</var>, <var>n</var>)</em></dt>
<dd><p>Return the commutation matrix
K(m,n)
which is the unique
<var>m</var>*<var>n</var> by <var>m</var>*<var>n</var>
matrix such that
<em>K(m,n) * vec(A) = vec(A')</em>
for all
<em>m</em> by <em>n</em>
matrices
<em>A</em>.
</p>
<p>If only one argument <var>m</var> is given,
<em>K(m,m)</em>
is returned.
</p>
<p>See Magnus and Neudecker (1988), <cite>Matrix Differential Calculus with
Applications in Statistics and Econometrics.</cite>
</p></dd></dl>
<a name="XREFduplication_005fmatrix"></a><dl>
<dt><a name="index-duplication_005fmatrix"></a>Function File: <em></em> <strong>duplication_matrix</strong> <em>(<var>n</var>)</em></dt>
<dd><p>Return the duplication matrix
<em>Dn</em>
which is the unique
<em>n^2</em> by <em>n*(n+1)/2</em>
matrix such that
<em>Dn vech (A) = vec (A)</em>
for all symmetric
<em>n</em> by <em>n</em>
matrices
<em>A</em>.
</p>
<p>See Magnus and Neudecker (1988), Matrix differential calculus with
applications in statistics and econometrics.
</p></dd></dl>
<a name="XREFdawson"></a><dl>
<dt><a name="index-dawson"></a>Mapping Function: <em></em> <strong>dawson</strong> <em>(<var>z</var>)</em></dt>
<dd><p>Compute the Dawson (scaled imaginary error) function,
</p>
<div class="example">
<pre class="example">(sqrt (pi) / 2) * exp (-z^2) * erfi (z)
</pre></div>
<p><strong>See also:</strong> <a href="#XREFerfc">erfc</a>, <a href="#XREFerf">erf</a>, <a href="#XREFerfcx">erfcx</a>, <a href="#XREFerfi">erfi</a>, <a href="#XREFerfinv">erfinv</a>, <a href="#XREFerfcinv">erfcinv</a>.
</p></dd></dl>
<a name="XREFellipj"></a><dl>
<dt><a name="index-ellipj"></a>Built-in Function: <em>[<var>sn</var>, <var>cn</var>, <var>dn</var>, <var>err</var>] =</em> <strong>ellipj</strong> <em>(<var>u</var>, <var>m</var>)</em></dt>
<dt><a name="index-ellipj-1"></a>Built-in Function: <em>[<var>sn</var>, <var>cn</var>, <var>dn</var>, <var>err</var>] =</em> <strong>ellipj</strong> <em>(<var>u</var>, <var>m</var>, <var>tol</var>)</em></dt>
<dd><p>Compute the Jacobi elliptic functions <var>sn</var>, <var>cn</var>, and <var>dn</var>
of complex argument <var>u</var> and real parameter <var>m</var>.
</p>
<p>If <var>m</var> is a scalar, the results are the same size as <var>u</var>.
If <var>u</var> is a scalar, the results are the same size as <var>m</var>.
If <var>u</var> is a column vector and <var>m</var> is a row vector, the
results are matrices with <code>length (<var>u</var>)</code> rows and
<code>length (<var>m</var>)</code> columns. Otherwise, <var>u</var> and
<var>m</var> must conform in size and the results will be the same size as the
inputs.
</p>
<p>The value of <var>u</var> may be complex.
The value of <var>m</var> must be 0 ≤ <var>m</var> ≤ 1.
</p>
<p>The optional input <var>tol</var> is currently ignored (<small>MATLAB</small> uses this to
allow faster, less accurate approximation).
</p>
<p>If requested, <var>err</var> contains the following status information
and is the same size as the result.
</p>
<ol>
<li> Normal return.
</li><li> Error—no computation, algorithm termination condition not met,
return <code>NaN</code>.
</li></ol>
<p>Reference: Milton Abramowitz and Irene A Stegun,
<cite>Handbook of Mathematical Functions</cite>, Chapter 16 (Sections 16.4, 16.13,
and 16.15), Dover, 1965.
</p>
<p><strong>See also:</strong> <a href="#XREFellipke">ellipke</a>.
</p></dd></dl>
<a name="XREFellipke"></a><dl>
<dt><a name="index-ellipke"></a>Function File: <em><var>k</var> =</em> <strong>ellipke</strong> <em>(<var>m</var>)</em></dt>
<dt><a name="index-ellipke-1"></a>Function File: <em><var>k</var> =</em> <strong>ellipke</strong> <em>(<var>m</var>, <var>tol</var>)</em></dt>
<dt><a name="index-ellipke-2"></a>Function File: <em>[<var>k</var>, <var>e</var>] =</em> <strong>ellipke</strong> <em>(…)</em></dt>
<dd><p>Compute complete elliptic integrals of the first K(<var>m</var>) and second
E(<var>m</var>) kind.
</p>
<p><var>m</var> must be a scalar or real array with -Inf ≤ <var>m</var> ≤ 1.
</p>
<p>The optional input <var>tol</var> is currently ignored (<small>MATLAB</small> uses this
to allow a faster, less accurate approximation).
</p>
<p>Called with only one output, elliptic integrals of the first kind are
returned.
</p>
<p>Reference: Milton Abramowitz and Irene A. Stegun,
<cite>Handbook of Mathematical Functions</cite>, Chapter 17, Dover, 1965.
</p>
<p><strong>See also:</strong> <a href="#XREFellipj">ellipj</a>.
</p></dd></dl>
<a name="XREFerf"></a><dl>
<dt><a name="index-erf"></a>Mapping Function: <em></em> <strong>erf</strong> <em>(<var>z</var>)</em></dt>
<dd><p>Compute the error function,
</p>
<div class="example">
<pre class="example"> z
2 /
erf (z) = --------- * | e^(-t^2) dt
sqrt (pi) /
t=0
</pre></div>
<p><strong>See also:</strong> <a href="#XREFerfc">erfc</a>, <a href="#XREFerfcx">erfcx</a>, <a href="#XREFerfi">erfi</a>, <a href="#XREFdawson">dawson</a>, <a href="#XREFerfinv">erfinv</a>, <a href="#XREFerfcinv">erfcinv</a>.
</p></dd></dl>
<a name="XREFerfc"></a><dl>
<dt><a name="index-erfc"></a>Mapping Function: <em></em> <strong>erfc</strong> <em>(<var>z</var>)</em></dt>
<dd><p>Compute the complementary error function,
<code>1 <span class="nolinebreak">-</span> erf (<var>z</var>)</code><!-- /@w -->.
</p>
<p><strong>See also:</strong> <a href="#XREFerfcinv">erfcinv</a>, <a href="#XREFerfcx">erfcx</a>, <a href="#XREFerfi">erfi</a>, <a href="#XREFdawson">dawson</a>, <a href="#XREFerf">erf</a>, <a href="#XREFerfinv">erfinv</a>.
</p></dd></dl>
<a name="XREFerfcx"></a><dl>
<dt><a name="index-erfcx"></a>Mapping Function: <em></em> <strong>erfcx</strong> <em>(<var>z</var>)</em></dt>
<dd><p>Compute the scaled complementary error function,
</p>
<div class="example">
<pre class="example">exp (z^2) * erfc (z)
</pre></div>
<p><strong>See also:</strong> <a href="#XREFerfc">erfc</a>, <a href="#XREFerf">erf</a>, <a href="#XREFerfi">erfi</a>, <a href="#XREFdawson">dawson</a>, <a href="#XREFerfinv">erfinv</a>, <a href="#XREFerfcinv">erfcinv</a>.
</p></dd></dl>
<a name="XREFerfi"></a><dl>
<dt><a name="index-erfi"></a>Mapping Function: <em></em> <strong>erfi</strong> <em>(<var>z</var>)</em></dt>
<dd><p>Compute the imaginary error function,
</p>
<div class="example">
<pre class="example">-i * erf (i*z)
</pre></div>
<p><strong>See also:</strong> <a href="#XREFerfc">erfc</a>, <a href="#XREFerf">erf</a>, <a href="#XREFerfcx">erfcx</a>, <a href="#XREFdawson">dawson</a>, <a href="#XREFerfinv">erfinv</a>, <a href="#XREFerfcinv">erfcinv</a>.
</p></dd></dl>
<a name="XREFerfinv"></a><dl>
<dt><a name="index-erfinv"></a>Mapping Function: <em></em> <strong>erfinv</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Compute the inverse error function, i.e., <var>y</var> such that
</p>
<div class="example">
<pre class="example">erf (<var>y</var>) == <var>x</var>
</pre></div>
<p><strong>See also:</strong> <a href="#XREFerf">erf</a>, <a href="#XREFerfc">erfc</a>, <a href="#XREFerfcx">erfcx</a>, <a href="#XREFerfi">erfi</a>, <a href="#XREFdawson">dawson</a>, <a href="#XREFerfcinv">erfcinv</a>.
</p></dd></dl>
<a name="XREFerfcinv"></a><dl>
<dt><a name="index-erfcinv"></a>Mapping Function: <em></em> <strong>erfcinv</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Compute the inverse complementary error function, i.e., <var>y</var> such that
</p>
<div class="example">
<pre class="example">erfc (<var>y</var>) == <var>x</var>
</pre></div>
<p><strong>See also:</strong> <a href="#XREFerfc">erfc</a>, <a href="#XREFerf">erf</a>, <a href="#XREFerfcx">erfcx</a>, <a href="#XREFerfi">erfi</a>, <a href="#XREFdawson">dawson</a>, <a href="#XREFerfinv">erfinv</a>.
</p></dd></dl>
<a name="XREFexpint"></a><dl>
<dt><a name="index-expint"></a>Function File: <em></em> <strong>expint</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Compute the exponential integral:
</p>
<div class="example">
<pre class="example"> infinity
/
E_1 (x) = | exp (-t)/t dt
/
x
</pre></div>
<p>Note: For compatibility, this functions uses the <small>MATLAB</small> definition
of the exponential integral. Most other sources refer to this particular
value as <em>E_1 (x)</em>, and the exponential integral is
</p>
<div class="example">
<pre class="example"> infinity
/
Ei (x) = - | exp (-t)/t dt
/
-x
</pre></div>
<p>The two definitions are related, for positive real values of <var>x</var>, by
<code><span class="nolinebreak">E_1</span> <span class="nolinebreak">(-x)</span> = <span class="nolinebreak">-Ei</span> (x) <span class="nolinebreak">-</span> i*pi</code><!-- /@w -->.
</p></dd></dl>
<a name="XREFgamma"></a><dl>
<dt><a name="index-gamma"></a>Mapping Function: <em></em> <strong>gamma</strong> <em>(<var>z</var>)</em></dt>
<dd><p>Compute the Gamma function,
</p>
<div class="example">
<pre class="example"> infinity
/
gamma (z) = | t^(z-1) exp (-t) dt.
/
t=0
</pre></div>
<p><strong>See also:</strong> <a href="#XREFgammainc">gammainc</a>, <a href="#XREFlgamma">lgamma</a>.
</p></dd></dl>
<a name="XREFgammainc"></a><dl>
<dt><a name="index-gammainc"></a>Mapping Function: <em></em> <strong>gammainc</strong> <em>(<var>x</var>, <var>a</var>)</em></dt>
<dt><a name="index-gammainc-1"></a>Mapping Function: <em></em> <strong>gammainc</strong> <em>(<var>x</var>, <var>a</var>, "lower")</em></dt>
<dt><a name="index-gammainc-2"></a>Mapping Function: <em></em> <strong>gammainc</strong> <em>(<var>x</var>, <var>a</var>, "upper")</em></dt>
<dd><p>Compute the normalized incomplete gamma function,
</p>
<div class="example">
<pre class="example"> x
1 /
gammainc (x, a) = --------- | exp (-t) t^(a-1) dt
gamma (a) /
t=0
</pre></div>
<p>with the limiting value of 1 as <var>x</var> approaches infinity.
The standard notation is <em>P(a,x)</em>, e.g., Abramowitz and Stegun (6.5.1).
</p>
<p>If <var>a</var> is scalar, then <code>gammainc (<var>x</var>, <var>a</var>)</code> is returned
for each element of <var>x</var> and vice versa.
</p>
<p>If neither <var>x</var> nor <var>a</var> is scalar, the sizes of <var>x</var> and
<var>a</var> must agree, and <code>gammainc</code> is applied element-by-element.
</p>
<p>By default the incomplete gamma function integrated from 0 to <var>x</var> is
computed. If <code>"upper"</code> is given then the complementary function
integrated from <var>x</var> to infinity is calculated. It should be noted that
</p>
<div class="example">
<pre class="example">gammainc (<var>x</var>, <var>a</var>) ≡ 1 - gammainc (<var>x</var>, <var>a</var>, "upper")
</pre></div>
<p><strong>See also:</strong> <a href="#XREFgamma">gamma</a>, <a href="#XREFlgamma">lgamma</a>.
</p></dd></dl>
<a name="XREFlegendre"></a><dl>
<dt><a name="index-legendre"></a>Function File: <em><var>l</var> =</em> <strong>legendre</strong> <em>(<var>n</var>, <var>x</var>)</em></dt>
<dt><a name="index-legendre-1"></a>Function File: <em><var>l</var> =</em> <strong>legendre</strong> <em>(<var>n</var>, <var>x</var>, <var>normalization</var>)</em></dt>
<dd><p>Compute the Legendre function of degree <var>n</var> and order
<var>m</var> = 0 … N. The optional argument, <var>normalization</var>,
may be one of <code>"unnorm"</code>, <code>"sch"</code>, or <code>"norm"</code>.
The default is <code>"unnorm"</code>. The value of <var>n</var> must be a
non-negative scalar integer.
</p>
<p>If the optional argument <var>normalization</var> is missing or is
<code>"unnorm"</code>, compute the Legendre function of degree <var>n</var> and
order <var>m</var> and return all values for <var>m</var> = 0 … <var>n</var>.
The return value has one dimension more than <var>x</var>.
</p>
<p>The Legendre Function of degree <var>n</var> and order <var>m</var>:
</p>
<div class="example">
<pre class="example"> m m 2 m/2 d^m
P(x) = (-1) * (1-x ) * ---- P(x)
n dx^m n
</pre></div>
<p>with Legendre polynomial of degree <var>n</var>:
</p>
<div class="example">
<pre class="example"> 1 d^n 2 n
P(x) = ------ [----(x - 1) ]
n 2^n n! dx^n
</pre></div>
<p><code>legendre (3, [-1.0, -0.9, -0.8])</code> returns the matrix:
</p>
<div class="example">
<pre class="example"> x | -1.0 | -0.9 | -0.8
------------------------------------
m=0 | -1.00000 | -0.47250 | -0.08000
m=1 | 0.00000 | -1.99420 | -1.98000
m=2 | 0.00000 | -2.56500 | -4.32000
m=3 | 0.00000 | -1.24229 | -3.24000
</pre></div>
<p>If the optional argument <code>normalization</code> is <code>"sch"</code>,
compute the Schmidt semi-normalized associated Legendre function.
The Schmidt semi-normalized associated Legendre function is related
to the unnormalized Legendre functions by the following:
</p>
<p>For Legendre functions of degree n and order 0:
</p>
<div class="example">
<pre class="example"> 0 0
SP(x) = P(x)
n n
</pre></div>
<p>For Legendre functions of degree n and order m:
</p>
<div class="example">
<pre class="example"> m m m 2(n-m)! 0.5
SP(x) = P(x) * (-1) * [-------]
n n (n+m)!
</pre></div>
<p>If the optional argument <var>normalization</var> is <code>"norm"</code>,
compute the fully normalized associated Legendre function.
The fully normalized associated Legendre function is related
to the unnormalized Legendre functions by the following:
</p>
<p>For Legendre functions of degree <var>n</var> and order <var>m</var>
</p>
<div class="example">
<pre class="example"> m m m (n+0.5)(n-m)! 0.5
NP(x) = P(x) * (-1) * [-------------]
n n (n+m)!
</pre></div>
</dd></dl>
<a name="XREFgammaln"></a><a name="XREFlgamma"></a><dl>
<dt><a name="index-lgamma"></a>Mapping Function: <em></em> <strong>lgamma</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-gammaln"></a>Mapping Function: <em></em> <strong>gammaln</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return the natural logarithm of the gamma function of <var>x</var>.
</p>
<p><strong>See also:</strong> <a href="#XREFgamma">gamma</a>, <a href="#XREFgammainc">gammainc</a>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Rational-Approximations.html#Rational-Approximations" accesskey="n" rel="next">Rational Approximations</a>, Previous: <a href="Utility-Functions.html#Utility-Functions" accesskey="p" rel="prev">Utility Functions</a>, Up: <a href="Arithmetic.html#Arithmetic" accesskey="u" rel="up">Arithmetic</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|