/usr/share/doc/octave-htmldoc/interpreter/Functions-of-Multiple-Variables.html is in octave-htmldoc 3.8.2-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Octave: Functions of Multiple Variables</title>
<meta name="description" content="GNU Octave: Functions of Multiple Variables">
<meta name="keywords" content="GNU Octave: Functions of Multiple Variables">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Numerical-Integration.html#Numerical-Integration" rel="up" title="Numerical Integration">
<link href="Differential-Equations.html#Differential-Equations" rel="next" title="Differential Equations">
<link href="Orthogonal-Collocation.html#Orthogonal-Collocation" rel="prev" title="Orthogonal Collocation">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Functions-of-Multiple-Variables"></a>
<div class="header">
<p>
Previous: <a href="Orthogonal-Collocation.html#Orthogonal-Collocation" accesskey="p" rel="prev">Orthogonal Collocation</a>, Up: <a href="Numerical-Integration.html#Numerical-Integration" accesskey="u" rel="up">Numerical Integration</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Functions-of-Multiple-Variables-1"></a>
<h3 class="section">23.3 Functions of Multiple Variables</h3>
<p>Octave does not have built-in functions for computing the integral of
functions of multiple variables directly. It is possible, however, to
compute the integral of a function of multiple variables using the
existing functions for one-dimensional integrals.
</p>
<p>To illustrate how the integration can be performed, we will integrate
the function
</p>
<div class="example">
<pre class="example">f(x, y) = sin(pi*x*y)*sqrt(x*y)
</pre></div>
<p>for <em>x</em> and <em>y</em> between 0 and 1.
</p>
<p>The first approach creates a function that integrates <em>f</em> with
respect to <em>x</em>, and then integrates that function with respect to
<em>y</em>. Because <code>quad</code> is written in Fortran it cannot be called
recursively. This means that <code>quad</code> cannot integrate a function
that calls <code>quad</code>, and hence cannot be used to perform the double
integration. Any of the other integrators, however, can be used which is
what the following code demonstrates.
</p>
<div class="example">
<pre class="example">function q = g(y)
q = ones (size (y));
for i = 1:length (y)
f = @(x) sin (pi*x.*y(i)) .* sqrt (x.*y(i));
q(i) = quadgk (f, 0, 1);
endfor
endfunction
I = quadgk ("g", 0, 1)
⇒ 0.30022
</pre></div>
<p>The above process can be simplified with the <code>dblquad</code> and
<code>triplequad</code> functions for integrals over two and three
variables. For example:
</p>
<div class="example">
<pre class="example">I = dblquad (@(x, y) sin (pi*x.*y) .* sqrt (x.*y), 0, 1, 0, 1)
⇒ 0.30022
</pre></div>
<a name="XREFdblquad"></a><dl>
<dt><a name="index-dblquad"></a>Function File: <em></em> <strong>dblquad</strong> <em>(<var>f</var>, <var>xa</var>, <var>xb</var>, <var>ya</var>, <var>yb</var>)</em></dt>
<dt><a name="index-dblquad-1"></a>Function File: <em></em> <strong>dblquad</strong> <em>(<var>f</var>, <var>xa</var>, <var>xb</var>, <var>ya</var>, <var>yb</var>, <var>tol</var>)</em></dt>
<dt><a name="index-dblquad-2"></a>Function File: <em></em> <strong>dblquad</strong> <em>(<var>f</var>, <var>xa</var>, <var>xb</var>, <var>ya</var>, <var>yb</var>, <var>tol</var>, <var>quadf</var>)</em></dt>
<dt><a name="index-dblquad-3"></a>Function File: <em></em> <strong>dblquad</strong> <em>(<var>f</var>, <var>xa</var>, <var>xb</var>, <var>ya</var>, <var>yb</var>, <var>tol</var>, <var>quadf</var>, …)</em></dt>
<dd><p>Numerically evaluate the double integral of <var>f</var>.
<var>f</var> is a function handle, inline function, or string
containing the name of the function to evaluate. The function <var>f</var> must
have the form <em>z = f(x,y)</em> where <var>x</var> is a vector and <var>y</var> is a
scalar. It should return a vector of the same length and orientation as
<var>x</var>.
</p>
<p><var>xa</var>, <var>ya</var> and <var>xb</var>, <var>yb</var> are the lower and upper limits of
integration for x and y respectively. The underlying integrator determines
whether infinite bounds are accepted.
</p>
<p>The optional argument <var>tol</var> defines the absolute tolerance used to
integrate each sub-integral. The default value is <em>1e^{-6}</em>.
</p>
<p>The optional argument <var>quadf</var> specifies which underlying integrator
function to use. Any choice but <code>quad</code> is available and the default
is <code>quadcc</code>.
</p>
<p>Additional arguments, are passed directly to <var>f</var>. To use the default
value for <var>tol</var> or <var>quadf</var> one may pass <code>':'</code> or an empty
matrix ([]).
</p>
<p><strong>See also:</strong> <a href="#XREFtriplequad">triplequad</a>, <a href="Functions-of-One-Variable.html#XREFquad">quad</a>, <a href="Functions-of-One-Variable.html#XREFquadv">quadv</a>, <a href="Functions-of-One-Variable.html#XREFquadl">quadl</a>, <a href="Functions-of-One-Variable.html#XREFquadgk">quadgk</a>, <a href="Functions-of-One-Variable.html#XREFquadcc">quadcc</a>, <a href="Functions-of-One-Variable.html#XREFtrapz">trapz</a>.
</p></dd></dl>
<a name="XREFtriplequad"></a><dl>
<dt><a name="index-triplequad"></a>Function File: <em></em> <strong>triplequad</strong> <em>(<var>f</var>, <var>xa</var>, <var>xb</var>, <var>ya</var>, <var>yb</var>, <var>za</var>, <var>zb</var>)</em></dt>
<dt><a name="index-triplequad-1"></a>Function File: <em></em> <strong>triplequad</strong> <em>(<var>f</var>, <var>xa</var>, <var>xb</var>, <var>ya</var>, <var>yb</var>, <var>za</var>, <var>zb</var>, <var>tol</var>)</em></dt>
<dt><a name="index-triplequad-2"></a>Function File: <em></em> <strong>triplequad</strong> <em>(<var>f</var>, <var>xa</var>, <var>xb</var>, <var>ya</var>, <var>yb</var>, <var>za</var>, <var>zb</var>, <var>tol</var>, <var>quadf</var>)</em></dt>
<dt><a name="index-triplequad-3"></a>Function File: <em></em> <strong>triplequad</strong> <em>(<var>f</var>, <var>xa</var>, <var>xb</var>, <var>ya</var>, <var>yb</var>, <var>za</var>, <var>zb</var>, <var>tol</var>, <var>quadf</var>, …)</em></dt>
<dd><p>Numerically evaluate the triple integral of <var>f</var>.
<var>f</var> is a function handle, inline function, or string
containing the name of the function to evaluate. The function <var>f</var> must
have the form <em>w = f(x,y,z)</em> where either <var>x</var> or <var>y</var> is a
vector and the remaining inputs are scalars. It should return a vector of
the same length and orientation as <var>x</var> or <var>y</var>.
</p>
<p><var>xa</var>, <var>ya</var>, <var>za</var> and <var>xb</var>, <var>yb</var>, <var>zb</var> are the lower
and upper limits of integration for x, y, and z respectively. The
underlying integrator determines whether infinite bounds are accepted.
</p>
<p>The optional argument <var>tol</var> defines the absolute tolerance used to
integrate each sub-integral. The default value is <em>1e^{-6}</em>.
</p>
<p>The optional argument <var>quadf</var> specifies which underlying integrator
function to use. Any choice but <code>quad</code> is available and the default
is <code>quadcc</code>.
</p>
<p>Additional arguments, are passed directly to <var>f</var>. To use the default
value for <var>tol</var> or <var>quadf</var> one may pass <code>':'</code> or an empty
matrix ([]).
</p>
<p><strong>See also:</strong> <a href="#XREFdblquad">dblquad</a>, <a href="Functions-of-One-Variable.html#XREFquad">quad</a>, <a href="Functions-of-One-Variable.html#XREFquadv">quadv</a>, <a href="Functions-of-One-Variable.html#XREFquadl">quadl</a>, <a href="Functions-of-One-Variable.html#XREFquadgk">quadgk</a>, <a href="Functions-of-One-Variable.html#XREFquadcc">quadcc</a>, <a href="Functions-of-One-Variable.html#XREFtrapz">trapz</a>.
</p></dd></dl>
<p>The above mentioned approach works, but is fairly slow, and that problem
increases exponentially with the dimensionality of the integral. Another
possible solution is to use Orthogonal Collocation as described in the
previous section (see <a href="Orthogonal-Collocation.html#Orthogonal-Collocation">Orthogonal Collocation</a>). The integral of a function
<em>f(x,y)</em> for <em>x</em> and <em>y</em> between 0 and 1 can be approximated
using <em>n</em> points by
the sum over <code>i=1:n</code> and <code>j=1:n</code> of <code>q(i)*q(j)*f(r(i),r(j))</code>,
where <em>q</em> and <em>r</em> is as returned by <code>colloc (n)</code>. The
generalization to more than two variables is straight forward. The
following code computes the studied integral using <em>n=8</em> points.
</p>
<div class="example">
<pre class="example">f = @(x,y) sin (pi*x*y') .* sqrt (x*y');
n = 8;
[t, ~, ~, q] = colloc (n);
I = q'*f(t,t)*q;
⇒ 0.30022
</pre></div>
<p>It should be noted that the number of points determines the quality
of the approximation. If the integration needs to be performed between
<em>a</em> and <em>b</em>, instead of 0 and 1, then a change of variables is needed.
</p>
<hr>
<div class="header">
<p>
Previous: <a href="Orthogonal-Collocation.html#Orthogonal-Collocation" accesskey="p" rel="prev">Orthogonal Collocation</a>, Up: <a href="Numerical-Integration.html#Numerical-Integration" accesskey="u" rel="up">Numerical Integration</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|