This file is indexed.

/usr/include/viennacl/linalg/qr-method-common.hpp is in libviennacl-dev 1.5.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#ifndef VIENNACL_LINALG_QR_METHOD_COMMON_HPP
#define VIENNACL_LINALG_QR_METHOD_COMMON_HPP

/* =========================================================================
   Copyright (c) 2010-2014, Institute for Microelectronics,
                            Institute for Analysis and Scientific Computing,
                            TU Wien.
   Portions of this software are copyright by UChicago Argonne, LLC.

                            -----------------
                  ViennaCL - The Vienna Computing Library
                            -----------------

   Project Head:    Karl Rupp                   rupp@iue.tuwien.ac.at

   (A list of authors and contributors can be found in the PDF manual)

   License:         MIT (X11), see file LICENSE in the base directory
============================================================================= */

#include <cmath>

#include "viennacl/ocl/device.hpp"
#include "viennacl/ocl/handle.hpp"
#include "viennacl/ocl/kernel.hpp"
#include "viennacl/linalg/opencl/kernels/svd.hpp"
#include "viennacl/meta/result_of.hpp"
#include "viennacl/vector.hpp"
#include "viennacl/matrix.hpp"

#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/io.hpp>

/** @file viennacl/linalg/qr-method-common.hpp
    @brief Common routines used for the QR method and SVD. Experimental.
*/

namespace viennacl
{
  namespace linalg
  {
    const std::string SVD_BIDIAG_PACK_KERNEL = "bidiag_pack";
    const std::string SVD_HOUSEHOLDER_UPDATE_A_LEFT_KERNEL = "house_update_A_left";
    const std::string SVD_HOUSEHOLDER_UPDATE_A_RIGHT_KERNEL = "house_update_A_right";
    const std::string SVD_HOUSEHOLDER_UPDATE_QL_KERNEL = "house_update_QL";
    const std::string SVD_HOUSEHOLDER_UPDATE_QR_KERNEL = "house_update_QR";
    const std::string SVD_COPY_COL_KERNEL = "copy_col";
    const std::string SVD_COPY_ROW_KERNEL = "copy_row";
    const std::string SVD_MATRIX_TRANSPOSE_KERNEL = "transpose_inplace";
    const std::string SVD_INVERSE_SIGNS_KERNEL = "inverse_signs";
    const std::string SVD_GIVENS_PREV_KERNEL = "givens_prev";
    const std::string SVD_GIVENS_NEXT_KERNEL = "givens_next";
    const std::string SVD_FINAL_ITER_UPDATE_KERNEL = "final_iter_update";
    const std::string SVD_UPDATE_QR_COLUMN_KERNEL = "update_qr_column";

    namespace detail
    {
      //static const float EPS = 0.00001f;
      //static const vcl_size_t ITER_MAX = 50;

      static const double EPS = 1e-10;
      static const vcl_size_t ITER_MAX = 50;

      template <typename SCALARTYPE>
      SCALARTYPE pythag(SCALARTYPE a, SCALARTYPE b)
      {
        return std::sqrt(a*a + b*b);
      }

      template <typename SCALARTYPE>
      SCALARTYPE sign(SCALARTYPE val)
      {
          return (val >= 0) ? SCALARTYPE(1) : SCALARTYPE(-1);
      }

      // DEPRECATED: Replace with viennacl::linalg::norm_2
      template <typename VectorType>
      typename VectorType::value_type norm_lcl(VectorType const & x, vcl_size_t size)
      {
        typename VectorType::value_type x_norm = 0.0;
        for(vcl_size_t i = 0; i < size; i++)
          x_norm += std::pow(x[i], 2);
        return std::sqrt(x_norm);
      }

      template <typename VectorType>
      void normalize(VectorType & x, vcl_size_t size)
      {
        typename VectorType::value_type x_norm = norm_lcl(x, size);
        for(vcl_size_t i = 0; i < size; i++)
            x[i] /= x_norm;
      }



      template <typename VectorType>
      void householder_vector(VectorType & v, vcl_size_t start)
      {
        typedef typename VectorType::value_type    ScalarType;
        ScalarType x_norm = norm_lcl(v, v.size());
        ScalarType alpha = -sign(v[start]) * x_norm;
        v[start] += alpha;
        normalize(v, v.size());
      }

      template <typename MatrixType>
      void transpose(MatrixType & A)
      {
        typedef typename MatrixType::value_type                                   ScalarType;
        typedef typename viennacl::result_of::cpu_value_type<ScalarType>::type    CPU_ScalarType;

        viennacl::ocl::kernel & kernel = viennacl::ocl::get_kernel(viennacl::linalg::opencl::kernels::svd<CPU_ScalarType>::program_name(), SVD_MATRIX_TRANSPOSE_KERNEL);

        viennacl::ocl::enqueue(kernel(A,
                                      static_cast<cl_uint>(A.internal_size1()),
                                      static_cast<cl_uint>(A.internal_size2())
                                     )
                              );
      }



      template <typename T>
      void cdiv(T xr, T xi, T yr, T yi, T& cdivr, T& cdivi)
      {
          // Complex scalar division.
          T r;
          T d;
          if (std::fabs(yr) > std::fabs(yi))
          {
              r = yi / yr;
              d = yr + r * yi;
              cdivr = (xr + r * xi) / d;
              cdivi = (xi - r * xr) / d;
          }
          else
          {
              r = yr / yi;
              d = yi + r * yr;
              cdivr = (r * xr + xi) / d;
              cdivi = (r * xi - xr) / d;
          }
      }


      template <typename SCALARTYPE, unsigned int ALIGNMENT>
      void copy_vec(viennacl::matrix<SCALARTYPE, row_major, ALIGNMENT>& A,
                    viennacl::vector<SCALARTYPE, ALIGNMENT>& V,
                    vcl_size_t row_start,
                    vcl_size_t col_start,
                    bool copy_col
      )
      {

        std::string kernel_name = copy_col ? SVD_COPY_COL_KERNEL : SVD_COPY_ROW_KERNEL;
        viennacl::ocl::context & ctx = const_cast<viennacl::ocl::context &>(viennacl::traits::opencl_handle(A).context());
        viennacl::ocl::kernel& kernel = ctx.get_kernel(viennacl::linalg::opencl::kernels::svd<SCALARTYPE>::program_name(), kernel_name);

        viennacl::ocl::enqueue(kernel(
                                      A,
                                      V,
                                      static_cast<cl_uint>(row_start),
                                      static_cast<cl_uint>(col_start),
                                      copy_col ? static_cast<cl_uint>(A.size1())
                                               : static_cast<cl_uint>(A.size2()),
                                      static_cast<cl_uint>(A.internal_size2())
                              ));

      }


      template<typename SCALARTYPE, unsigned int ALIGNMENT>
      void prepare_householder_vector(
                                    viennacl::matrix<SCALARTYPE, row_major, ALIGNMENT>& A,
                                    viennacl::vector<SCALARTYPE, ALIGNMENT>& D,
                                    vcl_size_t size,
                                    vcl_size_t row_start,
                                    vcl_size_t col_start,
                                    vcl_size_t start,
                                    bool is_column
                                    )
      {
        boost::numeric::ublas::vector<SCALARTYPE> tmp = boost::numeric::ublas::scalar_vector<SCALARTYPE>(size, 0);

        copy_vec(A, D, row_start, col_start, is_column);
        fast_copy(D.begin(), D.begin() + vcl_ptrdiff_t(size - start), tmp.begin() + start);

        //std::cout << "1: " << tmp << "\n";

        detail::householder_vector(tmp, start);
        fast_copy(tmp, D);

        //std::cout << "2: "  << D << "\n";
      }

      template <typename SCALARTYPE, unsigned int ALIGNMENT, typename VectorType>
      void bidiag_pack(viennacl::matrix<SCALARTYPE, row_major, ALIGNMENT>& A,
                       VectorType & dh,
                       VectorType & sh
                      )
      {
        viennacl::vector<SCALARTYPE, ALIGNMENT> D(dh.size());
        viennacl::vector<SCALARTYPE, ALIGNMENT> S(sh.size());

        viennacl::ocl::context & ctx = const_cast<viennacl::ocl::context &>(viennacl::traits::opencl_handle(A).context());
        viennacl::ocl::kernel& kernel = ctx.get_kernel(viennacl::linalg::opencl::kernels::svd<SCALARTYPE>::program_name(), SVD_BIDIAG_PACK_KERNEL);

        viennacl::ocl::enqueue(kernel(
                                      A,
                                      D,
                                      S,
                                      static_cast<cl_uint>(A.size1()),
                                      static_cast<cl_uint>(A.size2()),
                                      static_cast<cl_uint>(A.internal_size2())
                                    ));

        fast_copy(D, dh);
        fast_copy(S, sh);
      }

    }
  }
}

#endif