This file is indexed.

/usr/include/viennacl/linalg/gmres.hpp is in libviennacl-dev 1.5.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
#ifndef VIENNACL_GMRES_HPP_
#define VIENNACL_GMRES_HPP_

/* =========================================================================
   Copyright (c) 2010-2014, Institute for Microelectronics,
                            Institute for Analysis and Scientific Computing,
                            TU Wien.
   Portions of this software are copyright by UChicago Argonne, LLC.

                            -----------------
                  ViennaCL - The Vienna Computing Library
                            -----------------

   Project Head:    Karl Rupp                   rupp@iue.tuwien.ac.at

   (A list of authors and contributors can be found in the PDF manual)

   License:         MIT (X11), see file LICENSE in the base directory
============================================================================= */

/** @file gmres.hpp
    @brief Implementations of the generalized minimum residual method are in this file.
*/

#include <vector>
#include <cmath>
#include <limits>
#include "viennacl/forwards.h"
#include "viennacl/tools/tools.hpp"
#include "viennacl/linalg/norm_2.hpp"
#include "viennacl/linalg/prod.hpp"
#include "viennacl/linalg/inner_prod.hpp"
#include "viennacl/traits/clear.hpp"
#include "viennacl/traits/size.hpp"
#include "viennacl/meta/result_of.hpp"

namespace viennacl
{
  namespace linalg
  {

    /** @brief A tag for the solver GMRES. Used for supplying solver parameters and for dispatching the solve() function
    */
    class gmres_tag       //generalized minimum residual
    {
      public:
        /** @brief The constructor
        *
        * @param tol            Relative tolerance for the residual (solver quits if ||r|| < tol * ||r_initial||)
        * @param max_iterations The maximum number of iterations (including restarts
        * @param krylov_dim     The maximum dimension of the Krylov space before restart (number of restarts is found by max_iterations / krylov_dim)
        */
        gmres_tag(double tol = 1e-10, unsigned int max_iterations = 300, unsigned int krylov_dim = 20)
         : tol_(tol), iterations_(max_iterations), krylov_dim_(krylov_dim), iters_taken_(0) {}

        /** @brief Returns the relative tolerance */
        double tolerance() const { return tol_; }
        /** @brief Returns the maximum number of iterations */
        unsigned int max_iterations() const { return iterations_; }
        /** @brief Returns the maximum dimension of the Krylov space before restart */
        unsigned int krylov_dim() const { return krylov_dim_; }
        /** @brief Returns the maximum number of GMRES restarts */
        unsigned int max_restarts() const
        {
          unsigned int ret = iterations_ / krylov_dim_;
          if (ret > 0 && (ret * krylov_dim_ == iterations_) )
            return ret - 1;
          return ret;
        }

        /** @brief Return the number of solver iterations: */
        unsigned int iters() const { return iters_taken_; }
        /** @brief Set the number of solver iterations (should only be modified by the solver) */
        void iters(unsigned int i) const { iters_taken_ = i; }

        /** @brief Returns the estimated relative error at the end of the solver run */
        double error() const { return last_error_; }
        /** @brief Sets the estimated relative error at the end of the solver run */
        void error(double e) const { last_error_ = e; }

      private:
        double tol_;
        unsigned int iterations_;
        unsigned int krylov_dim_;

        //return values from solver
        mutable unsigned int iters_taken_;
        mutable double last_error_;
    };

    namespace detail
    {

      template <typename SRC_VECTOR, typename DEST_VECTOR>
      void gmres_copy_helper(SRC_VECTOR const & src, DEST_VECTOR & dest, vcl_size_t len, vcl_size_t start = 0)
      {
        for (vcl_size_t i=0; i<len; ++i)
          dest[start+i] = src[start+i];
      }

      template <typename ScalarType, typename DEST_VECTOR>
      void gmres_copy_helper(viennacl::vector<ScalarType> const & src, DEST_VECTOR & dest, vcl_size_t len, vcl_size_t start = 0)
      {
        typedef typename viennacl::vector<ScalarType>::difference_type   difference_type;
        viennacl::copy( src.begin() + static_cast<difference_type>(start),
                        src.begin() + static_cast<difference_type>(start + len),
                       dest.begin() + static_cast<difference_type>(start));
      }

      /** @brief Computes the householder vector 'hh_vec' which rotates 'input_vec' such that all entries below the j-th entry of 'v' become zero.
        *
        * @param input_vec       The input vector
        * @param hh_vec          The householder vector defining the relection (I - beta * hh_vec * hh_vec^T)
        * @param beta            The coefficient beta in (I - beta  * hh_vec * hh_vec^T)
        * @param mu              The norm of the input vector part relevant for the reflection: norm_2(input_vec[j:size])
        * @param j               Index of the last nonzero index in 'input_vec' after applying the reflection
      */
      template <typename VectorType, typename ScalarType>
      void gmres_setup_householder_vector(VectorType const & input_vec, VectorType & hh_vec, ScalarType & beta, ScalarType & mu, vcl_size_t j)
      {
        ScalarType input_j = input_vec(j);

        // copy entries from input vector to householder vector:
        detail::gmres_copy_helper(input_vec, hh_vec, viennacl::traits::size(hh_vec) - (j+1), j+1);

        ScalarType sigma = viennacl::linalg::norm_2(hh_vec);
        sigma *= sigma;

        if (sigma == 0)
        {
          beta = 0;
          mu = input_j;
        }
        else
        {
          mu = std::sqrt(sigma + input_j*input_j);

          ScalarType hh_vec_0 = (input_j <= 0) ? (input_j - mu) : (-sigma / (input_j + mu));

          beta = ScalarType(2) * hh_vec_0 * hh_vec_0 / (sigma + hh_vec_0 * hh_vec_0);

          //divide hh_vec by its diagonal element hh_vec_0
          hh_vec /= hh_vec_0;
          hh_vec[j] = ScalarType(1);
        }
      }

      // Apply (I - beta h h^T) to x (Householder reflection with Householder vector h)
      template <typename VectorType, typename ScalarType>
      void gmres_householder_reflect(VectorType & x, VectorType const & h, ScalarType beta)
      {
        ScalarType hT_in_x = viennacl::linalg::inner_prod(h, x);
        x -= (beta * hT_in_x) * h;
      }

    }

    /** @brief Implementation of the GMRES solver.
    *
    * Following the algorithm proposed by Walker in "A Simpler GMRES"
    *
    * @param matrix     The system matrix
    * @param rhs        The load vector
    * @param tag        Solver configuration tag
    * @param precond    A preconditioner. Precondition operation is done via member function apply()
    * @return The result vector
    */
    template <typename MatrixType, typename VectorType, typename PreconditionerType>
    VectorType solve(const MatrixType & matrix, VectorType const & rhs, gmres_tag const & tag, PreconditionerType const & precond)
    {
      typedef typename viennacl::result_of::value_type<VectorType>::type        ScalarType;
      typedef typename viennacl::result_of::cpu_value_type<ScalarType>::type    CPU_ScalarType;
      unsigned int problem_size = static_cast<unsigned int>(viennacl::traits::size(rhs));
      VectorType result = rhs;
      viennacl::traits::clear(result);

      unsigned int krylov_dim = tag.krylov_dim();
      if (problem_size < tag.krylov_dim())
        krylov_dim = problem_size; //A Krylov space larger than the matrix would lead to seg-faults (mathematically, error is certain to be zero already)

      VectorType res = rhs;
      VectorType v_k_tilde = rhs;
      VectorType v_k_tilde_temp = rhs;

      std::vector< std::vector<CPU_ScalarType> > R(krylov_dim, std::vector<CPU_ScalarType>(tag.krylov_dim()));
      std::vector<CPU_ScalarType> projection_rhs(krylov_dim);

      std::vector<VectorType>      householder_reflectors(krylov_dim, rhs);
      std::vector<CPU_ScalarType>  betas(krylov_dim);

      CPU_ScalarType norm_rhs = viennacl::linalg::norm_2(rhs);

      if (norm_rhs == 0) //solution is zero if RHS norm is zero
        return result;

      tag.iters(0);

      for (unsigned int it = 0; it <= tag.max_restarts(); ++it)
      {
        //
        // (Re-)Initialize residual: r = b - A*x (without temporary for the result of A*x)
        //
        res = rhs;
        res -= viennacl::linalg::prod(matrix, result);  //initial guess zero
        precond.apply(res);

        CPU_ScalarType rho_0 = viennacl::linalg::norm_2(res);

        //
        // Check for premature convergence
        //
        if (rho_0 / norm_rhs < tag.tolerance() ) // norm_rhs is known to be nonzero here
        {
          tag.error(rho_0 / norm_rhs);
          return result;
        }

        //
        // Normalize residual and set 'rho' to 1 as requested in 'A Simpler GMRES' by Walker and Zhou.
        //
        res /= rho_0;
        CPU_ScalarType rho = static_cast<CPU_ScalarType>(1.0);


        //
        // Iterate up until maximal Krylove space dimension is reached:
        //
        unsigned int k = 0;
        for (k = 0; k < krylov_dim; ++k)
        {
          tag.iters( tag.iters() + 1 ); //increase iteration counter

          // prepare storage:
          viennacl::traits::clear(R[k]);
          viennacl::traits::clear(householder_reflectors[k]);

          //compute v_k = A * v_{k-1} via Householder matrices
          if (k == 0)
          {
            v_k_tilde = viennacl::linalg::prod(matrix, res);
            precond.apply(v_k_tilde);
          }
          else
          {
            viennacl::traits::clear(v_k_tilde);
            v_k_tilde[k-1] = CPU_ScalarType(1);

            //Householder rotations, part 1: Compute P_1 * P_2 * ... * P_{k-1} * e_{k-1}
            for (int i = k-1; i > -1; --i)
              detail::gmres_householder_reflect(v_k_tilde, householder_reflectors[i], betas[i]);

            v_k_tilde_temp = viennacl::linalg::prod(matrix, v_k_tilde);
            precond.apply(v_k_tilde_temp);
            v_k_tilde = v_k_tilde_temp;

            //Householder rotations, part 2: Compute P_{k-1} * ... * P_{1} * v_k_tilde
            for (unsigned int i = 0; i < k; ++i)
              detail::gmres_householder_reflect(v_k_tilde, householder_reflectors[i], betas[i]);
          }

          //
          // Compute Householder reflection for v_k_tilde such that all entries below k-th entry are zero:
          //
          CPU_ScalarType rho_k_k = 0;
          detail::gmres_setup_householder_vector(v_k_tilde, householder_reflectors[k], betas[k], rho_k_k, k);

          //
          // copy first k entries from v_k_tilde to R[k] in order to fill k-th column with result of
          // P_k * v_k_tilde = (v[0], ... , v[k-1], norm(v), 0, 0, ...) =: (rho_{1,k}, rho_{2,k}, ..., rho_{k,k}, 0, ..., 0);
          //
          detail::gmres_copy_helper(v_k_tilde, R[k], k);
          R[k][k] = rho_k_k;

          //
          // Update residual: r = P_k r
          // Set zeta_k = r[k] including machine precision considerations: mathematically we have |r[k]| <= rho
          // Set rho *= sin(acos(r[k] / rho))
          //
          detail::gmres_householder_reflect(res, householder_reflectors[k], betas[k]);

          if (res[k] > rho) //machine precision reached
            res[k] = rho;
          if (res[k] < -rho) //machine precision reached
            res[k] = -rho;
          projection_rhs[k] = res[k];

          rho *= std::sin( std::acos(projection_rhs[k] / rho) );

          if (std::fabs(rho * rho_0 / norm_rhs) < tag.tolerance())  // Residual is sufficiently reduced, stop here
          {
            tag.error( std::fabs(rho*rho_0 / norm_rhs) );
            ++k;
            break;
          }
        } // for k

        //
        // Triangular solver stage:
        //

        for (int i=k-1; i>-1; --i)
        {
          for (unsigned int j=i+1; j<k; ++j)
            projection_rhs[i] -= R[j][i] * projection_rhs[j];     //R is transposed

          projection_rhs[i] /= R[i][i];
        }

        //
        // Note: 'projection_rhs' now holds the solution (eta_1, ..., eta_k)
        //

        res *= projection_rhs[0];

        if (k > 0)
        {
          for (unsigned int i = 0; i < k-1; ++i)
            res[i] += projection_rhs[i+1];
        }

        //
        // Form z inplace in 'res' by applying P_1 * ... * P_{k}
        //
        for (int i=k-1; i>=0; --i)
          detail::gmres_householder_reflect(res, householder_reflectors[i], betas[i]);

        res *= rho_0;
        result += res;  // x += rho_0 * z    in the paper

        //
        // Check for convergence:
        //
        tag.error(std::fabs(rho*rho_0 / norm_rhs));
        if ( tag.error() < tag.tolerance() )
          return result;
      }

      return result;
    }

    /** @brief Convenience overload of the solve() function using GMRES. Per default, no preconditioner is used
    */
    template <typename MatrixType, typename VectorType>
    VectorType solve(const MatrixType & matrix, VectorType const & rhs, gmres_tag const & tag)
    {
      return solve(matrix, rhs, tag, no_precond());
    }


  }
}

#endif