This file is indexed.

/usr/include/viennacl/fft.hpp is in libviennacl-dev 1.5.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
#ifndef VIENNACL_FFT_HPP
#define VIENNACL_FFT_HPP

/* =========================================================================
   Copyright (c) 2010-2014, Institute for Microelectronics,
                            Institute for Analysis and Scientific Computing,
                            TU Wien.
   Portions of this software are copyright by UChicago Argonne, LLC.

                            -----------------
                  ViennaCL - The Vienna Computing Library
                            -----------------

   Project Head:    Karl Rupp                   rupp@iue.tuwien.ac.at

   (A list of authors and contributors can be found in the PDF manual)

   License:         MIT (X11), see file LICENSE in the base directory
============================================================================= */

/** @file viennacl/fft.hpp
    @brief All routines related to the Fast Fourier Transform. Experimental.
*/

#include <viennacl/vector.hpp>
#include <viennacl/matrix.hpp>

#include "viennacl/linalg/opencl/kernels/fft.hpp"

#include <cmath>

#include <stdexcept>

namespace viennacl
{
  namespace detail
  {
    namespace fft
    {
        const vcl_size_t MAX_LOCAL_POINTS_NUM = 512;

        namespace FFT_DATA_ORDER {
            enum DATA_ORDER {
                ROW_MAJOR,
                COL_MAJOR
            };
        }
    }
  }
}

/// @cond
namespace viennacl
{
  namespace detail
  {
    namespace fft
    {

        inline bool is_radix2(vcl_size_t data_size) {
            return !((data_size > 2) && (data_size & (data_size - 1)));

        }

        inline vcl_size_t next_power_2(vcl_size_t n) {
            n = n - 1;

            vcl_size_t power = 1;

            while(power < sizeof(vcl_size_t) * 8) {
                n = n | (n >> power);
                power *= 2;
            }

            return n + 1;
        }

        inline vcl_size_t num_bits(vcl_size_t size)
        {
            vcl_size_t bits_datasize = 0;
            vcl_size_t ds = 1;

            while(ds < size)
            {
                ds = ds << 1;
                bits_datasize++;
            }

            return bits_datasize;
        }


        /**
         * @brief Direct algorithm for computing Fourier transformation.
         *
         * Works on any sizes of data.
         * Serial implementation has o(n^2) complexity
        */
        template<class SCALARTYPE>
        void direct(const viennacl::ocl::handle<cl_mem>& in,
                    const viennacl::ocl::handle<cl_mem>& out,
                    vcl_size_t size,
                    vcl_size_t stride,
                    vcl_size_t batch_num,
                    SCALARTYPE sign = -1.0f,
                    FFT_DATA_ORDER::DATA_ORDER data_order = FFT_DATA_ORDER::ROW_MAJOR
                    )
        {
          viennacl::ocl::context & ctx = const_cast<viennacl::ocl::context &>(in.context());
          viennacl::linalg::opencl::kernels::fft<SCALARTYPE>::init(ctx);

          std::string program_string = viennacl::linalg::opencl::kernels::matrix<SCALARTYPE, row_major>::program_name();
          if (data_order == FFT_DATA_ORDER::COL_MAJOR)
          {
            viennacl::linalg::opencl::kernels::matrix<SCALARTYPE, column_major>::init(ctx);
            program_string = viennacl::linalg::opencl::kernels::matrix<SCALARTYPE, column_major>::program_name();
          }
          else
            viennacl::linalg::opencl::kernels::matrix<SCALARTYPE, row_major>::init(ctx);
          viennacl::ocl::kernel& kernel = ctx.get_kernel(program_string, "fft_direct");
          viennacl::ocl::enqueue(kernel(in, out, static_cast<cl_uint>(size), static_cast<cl_uint>(stride), static_cast<cl_uint>(batch_num), sign));
        }

        /*
        * This function performs reorder of input data. Indexes are sorted in bit-reversal order.
        * Such reordering should be done before in-place FFT.
        */
        template <typename SCALARTYPE>
        void reorder(const viennacl::ocl::handle<cl_mem>& in,
                     vcl_size_t size,
                     vcl_size_t stride,
                     vcl_size_t bits_datasize,
                     vcl_size_t batch_num,
                     FFT_DATA_ORDER::DATA_ORDER data_order = FFT_DATA_ORDER::ROW_MAJOR
                     )
        {
          viennacl::ocl::context & ctx = const_cast<viennacl::ocl::context &>(in.context());
          viennacl::linalg::opencl::kernels::fft<SCALARTYPE>::init(ctx);

          std::string program_string = viennacl::linalg::opencl::kernels::matrix<SCALARTYPE, row_major>::program_name();
          if (data_order == FFT_DATA_ORDER::COL_MAJOR)
          {
            viennacl::linalg::opencl::kernels::matrix<SCALARTYPE, column_major>::init(ctx);
            program_string = viennacl::linalg::opencl::kernels::matrix<SCALARTYPE, column_major>::program_name();
          }
          else
            viennacl::linalg::opencl::kernels::matrix<SCALARTYPE, row_major>::init(ctx);

          viennacl::ocl::kernel& kernel = ctx.get_kernel(program_string, "fft_reorder");
          viennacl::ocl::enqueue(kernel(in,
                                        static_cast<cl_uint>(bits_datasize),
                                        static_cast<cl_uint>(size),
                                        static_cast<cl_uint>(stride),
                                        static_cast<cl_uint>(batch_num)
                                       )
                                );
        }

        /**
         * @brief Radix-2 algorithm for computing Fourier transformation.
         *
         * Works only on power-of-two sizes of data.
         * Serial implementation has o(n * lg n) complexity.
         * This is a Cooley-Tukey algorithm
        */
        template<class SCALARTYPE>
        void radix2(const viennacl::ocl::handle<cl_mem>& in,
                    vcl_size_t size,
                    vcl_size_t stride,
                    vcl_size_t batch_num,
                    SCALARTYPE sign = -1.0f,
                    FFT_DATA_ORDER::DATA_ORDER data_order = FFT_DATA_ORDER::ROW_MAJOR
                    )
        {
          viennacl::ocl::context & ctx = const_cast<viennacl::ocl::context &>(in.context());
          viennacl::linalg::opencl::kernels::fft<SCALARTYPE>::init(ctx);

            assert(batch_num != 0);
            assert(is_radix2(size));

            std::string program_string = viennacl::linalg::opencl::kernels::matrix<SCALARTYPE, row_major>::program_name();
            if (data_order == FFT_DATA_ORDER::COL_MAJOR)
            {
              viennacl::linalg::opencl::kernels::matrix<SCALARTYPE, column_major>::init(ctx);
              program_string = viennacl::linalg::opencl::kernels::matrix<SCALARTYPE, column_major>::program_name();
            }
            else
              viennacl::linalg::opencl::kernels::matrix<SCALARTYPE, row_major>::init(ctx);

            vcl_size_t bits_datasize = num_bits(size);

            if(size <= MAX_LOCAL_POINTS_NUM)
            {
                viennacl::ocl::kernel& kernel = ctx.get_kernel(program_string, "fft_radix2_local");
                viennacl::ocl::enqueue(kernel(in,
                                              viennacl::ocl::local_mem((size * 4) * sizeof(SCALARTYPE)),
                                              static_cast<cl_uint>(bits_datasize),
                                              static_cast<cl_uint>(size),
                                              static_cast<cl_uint>(stride),
                                              static_cast<cl_uint>(batch_num),
                                              sign));
            }
            else
            {
                reorder<SCALARTYPE>(in, size, stride, bits_datasize, batch_num);

                for(vcl_size_t step = 0; step < bits_datasize; step++)
                {
                    viennacl::ocl::kernel& kernel = ctx.get_kernel(program_string, "fft_radix2");
                    viennacl::ocl::enqueue(kernel(in,
                                                  static_cast<cl_uint>(step),
                                                  static_cast<cl_uint>(bits_datasize),
                                                  static_cast<cl_uint>(size),
                                                  static_cast<cl_uint>(stride),
                                                  static_cast<cl_uint>(batch_num),
                                                  sign));
                }

            }
        }

        /**
         * @brief Bluestein's algorithm for computing Fourier transformation.
         *
         * Currently,  Works only for sizes of input data which less than 2^16.
         * Uses a lot of additional memory, but should be fast for any size of data.
         * Serial implementation has something about o(n * lg n) complexity
        */
        template<class SCALARTYPE, unsigned int ALIGNMENT>
        void bluestein(viennacl::vector<SCALARTYPE, ALIGNMENT>& in,
                       viennacl::vector<SCALARTYPE, ALIGNMENT>& out,
                       vcl_size_t /*batch_num*/)
        {
          viennacl::ocl::context & ctx = const_cast<viennacl::ocl::context &>(viennacl::traits::opencl_handle(in).context());
          viennacl::linalg::opencl::kernels::fft<SCALARTYPE>::init(ctx);

          vcl_size_t size = in.size() >> 1;
          vcl_size_t ext_size = next_power_2(2 * size - 1);

          viennacl::vector<SCALARTYPE, ALIGNMENT> A(ext_size << 1);
          viennacl::vector<SCALARTYPE, ALIGNMENT> B(ext_size << 1);

          viennacl::vector<SCALARTYPE, ALIGNMENT> Z(ext_size << 1);

            {
                viennacl::ocl::kernel& kernel = ctx.get_kernel(viennacl::linalg::opencl::kernels::fft<SCALARTYPE>::program_name(), "zero2");
                viennacl::ocl::enqueue(kernel(
                                            A,
                                            B,
                                            static_cast<cl_uint>(ext_size)
                                            ));

            }
            {
                viennacl::ocl::kernel& kernel = ctx.get_kernel(viennacl::linalg::opencl::kernels::fft<SCALARTYPE>::program_name(), "bluestein_pre");
                viennacl::ocl::enqueue(kernel(
                                           in,
                                           A,
                                           B,
                                           static_cast<cl_uint>(size),
                                           static_cast<cl_uint>(ext_size)
                                       ));
            }

            viennacl::linalg::convolve_i(A, B, Z);

            {
                viennacl::ocl::kernel& kernel = ctx.get_kernel(viennacl::linalg::opencl::kernels::fft<SCALARTYPE>::program_name(), "bluestein_post");
                viennacl::ocl::enqueue(kernel(
                                            Z,
                                            out,
                                            static_cast<cl_uint>(size)
                                            ));
            }
        }

        template<class SCALARTYPE, unsigned int ALIGNMENT>
        void multiply(viennacl::vector<SCALARTYPE, ALIGNMENT> const & input1,
                      viennacl::vector<SCALARTYPE, ALIGNMENT> const & input2,
                      viennacl::vector<SCALARTYPE, ALIGNMENT> & output)
        {
          viennacl::ocl::context & ctx = const_cast<viennacl::ocl::context &>(viennacl::traits::opencl_handle(input1).context());
          viennacl::linalg::opencl::kernels::fft<SCALARTYPE>::init(ctx);
          vcl_size_t size = input1.size() >> 1;
          viennacl::ocl::kernel& kernel = ctx.get_kernel(viennacl::linalg::opencl::kernels::fft<SCALARTYPE>::program_name(), "fft_mult_vec");
          viennacl::ocl::enqueue(kernel(input1, input2, output, static_cast<cl_uint>(size)));
        }

        template<class SCALARTYPE, unsigned int ALIGNMENT>
        void normalize(viennacl::vector<SCALARTYPE, ALIGNMENT> & input)
        {
          viennacl::ocl::context & ctx = const_cast<viennacl::ocl::context &>(viennacl::traits::opencl_handle(input).context());
          viennacl::linalg::opencl::kernels::fft<SCALARTYPE>::init(ctx);

          viennacl::ocl::kernel& kernel = ctx.get_kernel(viennacl::linalg::opencl::kernels::fft<SCALARTYPE>::program_name(), "fft_div_vec_scalar");
          vcl_size_t size = input.size() >> 1;
          SCALARTYPE norm_factor = static_cast<SCALARTYPE>(size);
          viennacl::ocl::enqueue(kernel(input, static_cast<cl_uint>(size), norm_factor));
        }

        template<class SCALARTYPE, unsigned int ALIGNMENT>
        void transpose(viennacl::matrix<SCALARTYPE, viennacl::row_major, ALIGNMENT> & input)
        {
          viennacl::ocl::context & ctx = const_cast<viennacl::ocl::context &>(viennacl::traits::opencl_handle(input).context());
          viennacl::linalg::opencl::kernels::fft<SCALARTYPE>::init(ctx);

          viennacl::ocl::kernel& kernel = ctx.get_kernel(viennacl::linalg::opencl::kernels::fft<SCALARTYPE>::program_name(), "transpose_inplace");
          viennacl::ocl::enqueue(kernel(input,
                                        static_cast<cl_uint>(input.internal_size1()),
                                        static_cast<cl_uint>(input.internal_size2()) >> 1));
        }

        template<class SCALARTYPE, unsigned int ALIGNMENT>
        void transpose(viennacl::matrix<SCALARTYPE, viennacl::row_major, ALIGNMENT> const & input,
                       viennacl::matrix<SCALARTYPE, viennacl::row_major, ALIGNMENT> & output)
        {
          viennacl::ocl::context & ctx = const_cast<viennacl::ocl::context &>(viennacl::traits::opencl_handle(input).context());
          viennacl::linalg::opencl::kernels::fft<SCALARTYPE>::init(ctx);

          viennacl::ocl::kernel& kernel = ctx.get_kernel(viennacl::linalg::opencl::kernels::fft<SCALARTYPE>::program_name(), "transpose");
          viennacl::ocl::enqueue(kernel(input,
                                        output,
                                        static_cast<cl_uint>(input.internal_size1()),
                                        static_cast<cl_uint>(input.internal_size2() >> 1))
                                );
        }

        template<class SCALARTYPE>
        void real_to_complex(viennacl::vector_base<SCALARTYPE> const & in,
                             viennacl::vector_base<SCALARTYPE> & out,
                             vcl_size_t size)
        {
          viennacl::ocl::context & ctx = const_cast<viennacl::ocl::context &>(viennacl::traits::opencl_handle(in).context());
          viennacl::linalg::opencl::kernels::fft<SCALARTYPE>::init(ctx);
          viennacl::ocl::kernel & kernel = ctx.get_kernel(viennacl::linalg::opencl::kernels::fft<SCALARTYPE>::program_name(), "real_to_complex");
          viennacl::ocl::enqueue(kernel(in, out, static_cast<cl_uint>(size)));
        }

        template<class SCALARTYPE>
        void complex_to_real(viennacl::vector_base<SCALARTYPE> const & in,
                             viennacl::vector_base<SCALARTYPE>& out,
                             vcl_size_t size)
        {
          viennacl::ocl::context & ctx = const_cast<viennacl::ocl::context &>(viennacl::traits::opencl_handle(in).context());
          viennacl::linalg::opencl::kernels::fft<SCALARTYPE>::init(ctx);
          viennacl::ocl::kernel& kernel = ctx.get_kernel(viennacl::linalg::opencl::kernels::fft<SCALARTYPE>::program_name(), "complex_to_real");
          viennacl::ocl::enqueue(kernel(in, out, static_cast<cl_uint>(size)));
        }

        template<class SCALARTYPE>
        void reverse(viennacl::vector_base<SCALARTYPE>& in)
        {
          viennacl::ocl::context & ctx = const_cast<viennacl::ocl::context &>(viennacl::traits::opencl_handle(in).context());
          viennacl::linalg::opencl::kernels::fft<SCALARTYPE>::init(ctx);
          vcl_size_t size = in.size();
          viennacl::ocl::kernel& kernel = ctx.get_kernel(viennacl::linalg::opencl::kernels::fft<SCALARTYPE>::program_name(), "reverse_inplace");
          viennacl::ocl::enqueue(kernel(in, static_cast<cl_uint>(size)));
        }


    } //namespace fft
  } //namespace detail

  /**
    * @brief Generic inplace version of 1-D Fourier transformation.
    *
    * @param input       Input vector, result will be stored here.
    * @param batch_num   Number of items in batch
    * @param sign        Sign of exponent, default is -1.0
    */
  template<class SCALARTYPE, unsigned int ALIGNMENT>
  void inplace_fft(viennacl::vector<SCALARTYPE, ALIGNMENT>& input,
            vcl_size_t batch_num = 1,
            SCALARTYPE sign = -1.0)
  {
      vcl_size_t size = (input.size() >> 1) / batch_num;

      if(!viennacl::detail::fft::is_radix2(size))
      {
          viennacl::vector<SCALARTYPE, ALIGNMENT> output(input.size());
          viennacl::detail::fft::direct(viennacl::traits::opencl_handle(input),
                                        viennacl::traits::opencl_handle(output),
                                        size,
                                        size,
                                        batch_num,
                                        sign);

          viennacl::copy(output, input);
      } else {
          viennacl::detail::fft::radix2(viennacl::traits::opencl_handle(input), size, size, batch_num, sign);
      }
  }

  /**
    * @brief Generic version of 1-D Fourier transformation.
    *
    * @param input      Input vector.
    * @param output     Output vector.
    * @param batch_num  Number of items in batch.
    * @param sign       Sign of exponent, default is -1.0
    */
  template<class SCALARTYPE, unsigned int ALIGNMENT>
  void fft(viennacl::vector<SCALARTYPE, ALIGNMENT>& input,
            viennacl::vector<SCALARTYPE, ALIGNMENT>& output,
            vcl_size_t batch_num = 1,
            SCALARTYPE sign = -1.0
            )
  {
      vcl_size_t size = (input.size() >> 1) / batch_num;

      if(viennacl::detail::fft::is_radix2(size))
      {
          viennacl::copy(input, output);
          viennacl::detail::fft::radix2(viennacl::traits::opencl_handle(output), size, size, batch_num, sign);
      } else {
          viennacl::detail::fft::direct(viennacl::traits::opencl_handle(input),
                                        viennacl::traits::opencl_handle(output),
                                        size,
                                        size,
                                        batch_num,
                                        sign);
      }
  }

  /**
    * @brief Generic inplace version of 2-D Fourier transformation.
    *
    * @param input       Input matrix, result will be stored here.
    * @param sign        Sign of exponent, default is -1.0
    */
  template<class SCALARTYPE, unsigned int ALIGNMENT>
  void inplace_fft(viennacl::matrix<SCALARTYPE, viennacl::row_major, ALIGNMENT>& input,
            SCALARTYPE sign = -1.0)
  {
      vcl_size_t rows_num = input.size1();
      vcl_size_t cols_num = input.size2() >> 1;

      vcl_size_t cols_int = input.internal_size2() >> 1;

      // batch with rows
      if(viennacl::detail::fft::is_radix2(cols_num))
      {
          viennacl::detail::fft::radix2(viennacl::traits::opencl_handle(input), cols_num, cols_int, rows_num, sign, viennacl::detail::fft::FFT_DATA_ORDER::ROW_MAJOR);
      }
      else
      {
          viennacl::matrix<SCALARTYPE, viennacl::row_major, ALIGNMENT> output(input.size1(), input.size2());

          viennacl::detail::fft::direct(viennacl::traits::opencl_handle(input),
                                        viennacl::traits::opencl_handle(output),
                                        cols_num,
                                        cols_int,
                                        rows_num,
                                        sign,
                                        viennacl::detail::fft::FFT_DATA_ORDER::ROW_MAJOR
                                        );

          input = output;
      }

      // batch with cols
      if (viennacl::detail::fft::is_radix2(rows_num)) {
          viennacl::detail::fft::radix2(viennacl::traits::opencl_handle(input), rows_num, cols_int, cols_num, sign, viennacl::detail::fft::FFT_DATA_ORDER::COL_MAJOR);
      } else {
          viennacl::matrix<SCALARTYPE, viennacl::row_major, ALIGNMENT> output(input.size1(), input.size2());

          viennacl::detail::fft::direct(viennacl::traits::opencl_handle(input),
                                        viennacl::traits::opencl_handle(output),
                                        rows_num,
                                        cols_int,
                                        cols_num,
                                        sign,
                                        viennacl::detail::fft::FFT_DATA_ORDER::COL_MAJOR);

          input = output;
      }

  }

  /**
    * @brief Generic version of 2-D Fourier transformation.
    *
    * @param input      Input vector.
    * @param output     Output vector.
    * @param sign       Sign of exponent, default is -1.0
    */
  template<class SCALARTYPE, unsigned int ALIGNMENT>
  void fft(viennacl::matrix<SCALARTYPE, viennacl::row_major, ALIGNMENT>& input,
            viennacl::matrix<SCALARTYPE, viennacl::row_major, ALIGNMENT>& output,
            SCALARTYPE sign = -1.0)
  {
      vcl_size_t rows_num = input.size1();
      vcl_size_t cols_num = input.size2() >> 1;

      vcl_size_t cols_int = input.internal_size2() >> 1;

      // batch with rows
      if(viennacl::detail::fft::is_radix2(cols_num))
      {
          output = input;
          viennacl::detail::fft::radix2(viennacl::traits::opencl_handle(output), cols_num, cols_int, rows_num, sign, viennacl::detail::fft::FFT_DATA_ORDER::ROW_MAJOR);
      }
      else
      {
          viennacl::detail::fft::direct(viennacl::traits::opencl_handle(input),
                                        viennacl::traits::opencl_handle(output),
                                        cols_num,
                                        cols_int,
                                        rows_num,
                                        sign,
                                        viennacl::detail::fft::FFT_DATA_ORDER::ROW_MAJOR
                                        );
      }

      // batch with cols
      if(viennacl::detail::fft::is_radix2(rows_num))
      {
          viennacl::detail::fft::radix2(viennacl::traits::opencl_handle(output), rows_num, cols_int, cols_num, sign, viennacl::detail::fft::FFT_DATA_ORDER::COL_MAJOR);
      }
      else
      {
          viennacl::matrix<SCALARTYPE, viennacl::row_major, ALIGNMENT> tmp(output.size1(), output.size2());
          tmp = output;

          viennacl::detail::fft::direct(viennacl::traits::opencl_handle(tmp),
                              viennacl::traits::opencl_handle(output),
                              rows_num,
                              cols_int,
                              cols_num,
                              sign,
                              viennacl::detail::fft::FFT_DATA_ORDER::COL_MAJOR);
      }
  }

  /**
    * @brief Generic inplace version of inverse 1-D Fourier transformation.
    *
    * Shorthand function for fft(sign = 1.0)
    *
    * @param input      Input vector.
    * @param batch_num  Number of items in batch.
    * @param sign       Sign of exponent, default is -1.0
    */
  template<class SCALARTYPE, unsigned int ALIGNMENT>
  void inplace_ifft(viennacl::vector<SCALARTYPE, ALIGNMENT>& input,
            vcl_size_t batch_num = 1)
  {
      viennacl::inplace_fft(input, batch_num, SCALARTYPE(1.0));
      viennacl::detail::fft::normalize(input);
  }

  /**
    * @brief Generic version of inverse 1-D Fourier transformation.
    *
    * Shorthand function for fft(sign = 1.0)
    *
    * @param input      Input vector.
    * @param output     Output vector.
    * @param batch_num  Number of items in batch.
    * @param sign       Sign of exponent, default is -1.0
    */
  template<class SCALARTYPE, unsigned int ALIGNMENT>
  void ifft(viennacl::vector<SCALARTYPE, ALIGNMENT>& input,
            viennacl::vector<SCALARTYPE, ALIGNMENT>& output,
            vcl_size_t batch_num = 1
            )
  {
      viennacl::fft(input, output, batch_num, SCALARTYPE(1.0));
      viennacl::detail::fft::normalize(output);
  }

  namespace linalg
  {
    /**
      * @brief 1-D convolution of two vectors.
      *
      * This function does not make any changes to input vectors
      *
      * @param input1     Input vector #1.
      * @param input2     Input vector #2.
      * @param output     Output vector.
      */
    template<class SCALARTYPE, unsigned int ALIGNMENT>
    void convolve(viennacl::vector<SCALARTYPE, ALIGNMENT>& input1,
                  viennacl::vector<SCALARTYPE, ALIGNMENT>& input2,
                  viennacl::vector<SCALARTYPE, ALIGNMENT>& output
                  )
    {
        assert(input1.size() == input2.size());
        assert(input1.size() == output.size());
        //temporal arrays
        viennacl::vector<SCALARTYPE, ALIGNMENT> tmp1(input1.size());
        viennacl::vector<SCALARTYPE, ALIGNMENT> tmp2(input2.size());
        viennacl::vector<SCALARTYPE, ALIGNMENT> tmp3(output.size());

        // align input arrays to equal size
        // FFT of input data
        viennacl::fft(input1, tmp1);
        viennacl::fft(input2, tmp2);

        // multiplication of input data
        viennacl::detail::fft::multiply(tmp1, tmp2, tmp3);
        // inverse FFT of input data
        viennacl::ifft(tmp3, output);
    }

    /**
      * @brief 1-D convolution of two vectors.
      *
      * This function can make changes to input vectors to avoid additional memory allocations.
      *
      * @param input1     Input vector #1.
      * @param input2     Input vector #2.
      * @param output     Output vector.
      */
    template<class SCALARTYPE, unsigned int ALIGNMENT>
    void convolve_i(viennacl::vector<SCALARTYPE, ALIGNMENT>& input1,
                    viennacl::vector<SCALARTYPE, ALIGNMENT>& input2,
                    viennacl::vector<SCALARTYPE, ALIGNMENT>& output
                    )
    {
        assert(input1.size() == input2.size());
        assert(input1.size() == output.size());

        viennacl::inplace_fft(input1);
        viennacl::inplace_fft(input2);

        viennacl::detail::fft::multiply(input1, input2, output);

        viennacl::inplace_ifft(output);
    }
  }
} //namespace linalg

/// @endcond
#endif