This file is indexed.

/usr/include/viennacl/ell_matrix.hpp is in libviennacl-dev 1.5.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#ifndef VIENNACL_ELL_MATRIX_HPP_
#define VIENNACL_ELL_MATRIX_HPP_

/* =========================================================================
   Copyright (c) 2010-2014, Institute for Microelectronics,
                            Institute for Analysis and Scientific Computing,
                            TU Wien.
   Portions of this software are copyright by UChicago Argonne, LLC.

                            -----------------
                  ViennaCL - The Vienna Computing Library
                            -----------------

   Project Head:    Karl Rupp                   rupp@iue.tuwien.ac.at

   (A list of authors and contributors can be found in the PDF manual)

   License:         MIT (X11), see file LICENSE in the base directory
============================================================================= */

/** @file viennacl/ell_matrix.hpp
    @brief Implementation of the ell_matrix class

    Contributed by Volodymyr Kysenko.
*/


#include "viennacl/forwards.h"
#include "viennacl/vector.hpp"

#include "viennacl/tools/tools.hpp"

#include "viennacl/linalg/sparse_matrix_operations.hpp"

namespace viennacl
{
    /** @brief Sparse matrix class using the ELLPACK format for storing the nonzeros.
      *
      * This format works best for matrices where the number of nonzeros per row is mostly the same.
      * Finite element and finite difference methods on nicely shaped domains often result in such a nonzero pattern.
      * For a matrix
      *
      *   (1 2 0 0 0)
      *   (2 3 4 0 0)
      *   (0 5 6 0 7)
      *   (0 0 8 9 0)
      *
      * the entries are layed out in chunks of size 3 as
      *   (1 2 5 8; 2 3 6 9; 0 4 7 0)
      * Note that this is a 'transposed' representation in order to maximize coalesced memory access.
      */
    template<typename SCALARTYPE, unsigned int ALIGNMENT /* see forwards.h for default argument */>
    class ell_matrix
    {
      public:
        typedef viennacl::backend::mem_handle                                                              handle_type;
        typedef scalar<typename viennacl::tools::CHECK_SCALAR_TEMPLATE_ARGUMENT<SCALARTYPE>::ResultType>   value_type;
        typedef vcl_size_t                                                                                 size_type;

        ell_matrix() : rows_(0), cols_(0), maxnnz_(0) {}

        ell_matrix(viennacl::context ctx) : rows_(0), cols_(0), maxnnz_(0)
        {
            coords_.switch_active_handle_id(ctx.memory_type());
          elements_.switch_active_handle_id(ctx.memory_type());

#ifdef VIENNACL_WITH_OPENCL
          if (ctx.memory_type() == OPENCL_MEMORY)
          {
              coords_.opencl_handle().context(ctx.opencl_context());
            elements_.opencl_handle().context(ctx.opencl_context());
          }
#endif
        }

      public:
        vcl_size_t internal_size1() const { return viennacl::tools::align_to_multiple<vcl_size_t>(rows_, ALIGNMENT); }
        vcl_size_t internal_size2() const { return viennacl::tools::align_to_multiple<vcl_size_t>(cols_, ALIGNMENT); }

        vcl_size_t size1() const { return rows_; }
        vcl_size_t size2() const { return cols_; }

        vcl_size_t internal_maxnnz() const {return viennacl::tools::align_to_multiple<vcl_size_t>(maxnnz_, ALIGNMENT); }
        vcl_size_t maxnnz() const { return maxnnz_; }

        vcl_size_t nnz() const { return rows_ * maxnnz_; }
        vcl_size_t internal_nnz() const { return internal_size1() * internal_maxnnz(); }

              handle_type & handle()       { return elements_; }
        const handle_type & handle() const { return elements_; }

              handle_type & handle2()       { return coords_; }
        const handle_type & handle2() const { return coords_; }

      #if defined(_MSC_VER) && _MSC_VER < 1500          //Visual Studio 2005 needs special treatment
        template <typename CPU_MATRIX>
        friend void copy(const CPU_MATRIX & cpu_matrix, ell_matrix & gpu_matrix );
      #else
        template <typename CPU_MATRIX, typename T, unsigned int ALIGN>
        friend void copy(const CPU_MATRIX & cpu_matrix, ell_matrix<T, ALIGN> & gpu_matrix );
      #endif

      private:
        vcl_size_t rows_;
        vcl_size_t cols_;
        vcl_size_t maxnnz_;

        handle_type coords_;
        handle_type elements_;
    };

    template <typename CPU_MATRIX, typename SCALARTYPE, unsigned int ALIGNMENT>
    void copy(const CPU_MATRIX& cpu_matrix, ell_matrix<SCALARTYPE, ALIGNMENT>& gpu_matrix )
    {
      assert( (gpu_matrix.size1() == 0 || viennacl::traits::size1(cpu_matrix) == gpu_matrix.size1()) && bool("Size mismatch") );
      assert( (gpu_matrix.size2() == 0 || viennacl::traits::size2(cpu_matrix) == gpu_matrix.size2()) && bool("Size mismatch") );

      if(cpu_matrix.size1() > 0 && cpu_matrix.size2() > 0)
      {
        //determine max capacity for row
        vcl_size_t max_entries_per_row = 0;
        for (typename CPU_MATRIX::const_iterator1 row_it = cpu_matrix.begin1(); row_it != cpu_matrix.end1(); ++row_it)
        {
          vcl_size_t num_entries = 0;
          for (typename CPU_MATRIX::const_iterator2 col_it = row_it.begin(); col_it != row_it.end(); ++col_it)
          {
              ++num_entries;
          }

          max_entries_per_row = std::max(max_entries_per_row, num_entries);
        }

        //setup GPU matrix
        gpu_matrix.maxnnz_ = max_entries_per_row;
        gpu_matrix.rows_ = cpu_matrix.size1();
        gpu_matrix.cols_ = cpu_matrix.size2();

        vcl_size_t nnz = gpu_matrix.internal_nnz();

        viennacl::backend::typesafe_host_array<unsigned int> coords(gpu_matrix.handle2(), nnz);
        std::vector<SCALARTYPE> elements(nnz, 0);

        // std::cout << "ELL_MATRIX copy " << gpu_matrix.maxnnz_ << " " << gpu_matrix.rows_ << " " << gpu_matrix.cols_ << " "
        //             << gpu_matrix.internal_maxnnz() << "\n";

        for (typename CPU_MATRIX::const_iterator1 row_it = cpu_matrix.begin1(); row_it != cpu_matrix.end1(); ++row_it)
        {
          vcl_size_t data_index = 0;

          for (typename CPU_MATRIX::const_iterator2 col_it = row_it.begin(); col_it != row_it.end(); ++col_it)
          {
            coords.set(gpu_matrix.internal_size1() * data_index + col_it.index1(), col_it.index2());
            elements[gpu_matrix.internal_size1() * data_index + col_it.index1()] = *col_it;
            //std::cout << *col_it << "\n";
              data_index++;
          }
        }

        viennacl::backend::memory_create(gpu_matrix.handle2(), coords.raw_size(),                   traits::context(gpu_matrix.handle2()), coords.get());
        viennacl::backend::memory_create(gpu_matrix.handle(), sizeof(SCALARTYPE) * elements.size(), traits::context(gpu_matrix.handle()), &(elements[0]));
      }
    }

    template <typename CPU_MATRIX, typename SCALARTYPE, unsigned int ALIGNMENT>
    void copy(const ell_matrix<SCALARTYPE, ALIGNMENT>& gpu_matrix, CPU_MATRIX& cpu_matrix)
    {
      assert( (viennacl::traits::size1(cpu_matrix) == gpu_matrix.size1()) && bool("Size mismatch") );
      assert( (viennacl::traits::size2(cpu_matrix) == gpu_matrix.size2()) && bool("Size mismatch") );

      if(gpu_matrix.size1() > 0 && gpu_matrix.size2() > 0)
      {
        std::vector<SCALARTYPE> elements(gpu_matrix.internal_nnz());
        viennacl::backend::typesafe_host_array<unsigned int> coords(gpu_matrix.handle2(), gpu_matrix.internal_nnz());

        viennacl::backend::memory_read(gpu_matrix.handle(), 0, sizeof(SCALARTYPE) * elements.size(), &(elements[0]));
        viennacl::backend::memory_read(gpu_matrix.handle2(), 0, coords.raw_size(), coords.get());

        for(vcl_size_t row = 0; row < gpu_matrix.size1(); row++)
        {
          for(vcl_size_t ind = 0; ind < gpu_matrix.internal_maxnnz(); ind++)
          {
            vcl_size_t offset = gpu_matrix.internal_size1() * ind + row;

            if(elements[offset] == static_cast<SCALARTYPE>(0.0))
                continue;

            if(coords[offset] >= gpu_matrix.size2())
            {
                std::cerr << "ViennaCL encountered invalid data " << offset << " " << ind << " " << row << " " << coords[offset] << " " << gpu_matrix.size2() << std::endl;
                return;
            }

            cpu_matrix(row, coords[offset]) = elements[offset];
          }
        }
      }
    }


    //
    // Specify available operations:
    //

    /** \cond */

    namespace linalg
    {
      namespace detail
      {
        // x = A * y
        template <typename T, unsigned int A>
        struct op_executor<vector_base<T>, op_assign, vector_expression<const ell_matrix<T, A>, const vector_base<T>, op_prod> >
        {
            static void apply(vector_base<T> & lhs, vector_expression<const ell_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
            {
              // check for the special case x = A * x
              if (viennacl::traits::handle(lhs) == viennacl::traits::handle(rhs.rhs()))
              {
                viennacl::vector<T> temp(lhs);
                viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), temp);
                lhs = temp;
              }
              else
                viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), lhs);
            }
        };

        template <typename T, unsigned int A>
        struct op_executor<vector_base<T>, op_inplace_add, vector_expression<const ell_matrix<T, A>, const vector_base<T>, op_prod> >
        {
            static void apply(vector_base<T> & lhs, vector_expression<const ell_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
            {
              viennacl::vector<T> temp(lhs);
              viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), temp);
              lhs += temp;
            }
        };

        template <typename T, unsigned int A>
        struct op_executor<vector_base<T>, op_inplace_sub, vector_expression<const ell_matrix<T, A>, const vector_base<T>, op_prod> >
        {
            static void apply(vector_base<T> & lhs, vector_expression<const ell_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
            {
              viennacl::vector<T> temp(lhs);
              viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), temp);
              lhs -= temp;
            }
        };


        // x = A * vec_op
        template <typename T, unsigned int A, typename LHS, typename RHS, typename OP>
        struct op_executor<vector_base<T>, op_assign, vector_expression<const ell_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
        {
            static void apply(vector_base<T> & lhs, vector_expression<const ell_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
            {
              viennacl::vector<T> temp(rhs.rhs(), viennacl::traits::context(rhs));
              viennacl::linalg::prod_impl(rhs.lhs(), temp, lhs);
            }
        };

        // x = A * vec_op
        template <typename T, unsigned int A, typename LHS, typename RHS, typename OP>
        struct op_executor<vector_base<T>, op_inplace_add, vector_expression<const ell_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
        {
            static void apply(vector_base<T> & lhs, vector_expression<const ell_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
            {
              viennacl::vector<T> temp(rhs.rhs(), viennacl::traits::context(rhs));
              viennacl::vector<T> temp_result(lhs);
              viennacl::linalg::prod_impl(rhs.lhs(), temp, temp_result);
              lhs += temp_result;
            }
        };

        // x = A * vec_op
        template <typename T, unsigned int A, typename LHS, typename RHS, typename OP>
        struct op_executor<vector_base<T>, op_inplace_sub, vector_expression<const ell_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
        {
            static void apply(vector_base<T> & lhs, vector_expression<const ell_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
            {
              viennacl::vector<T> temp(rhs.rhs(), viennacl::traits::context(rhs));
              viennacl::vector<T> temp_result(lhs);
              viennacl::linalg::prod_impl(rhs.lhs(), temp, temp_result);
              lhs -= temp_result;
            }
        };

     } // namespace detail
   } // namespace linalg

    /** \endcond */
}

#endif