This file is indexed.

/usr/include/thrust/transform_reduce.h is in libthrust-dev 1.7.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/*
 *  Copyright 2008-2012 NVIDIA Corporation
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */


/*! \file transform_reduce.h
 *  \brief Fused transform / reduction
 */

#pragma once

#include <thrust/detail/config.h>
#include <thrust/detail/execution_policy.h>

namespace thrust
{


/*! \addtogroup reductions
 *  \{
 *  \addtogroup transformed_reductions Transformed Reductions
 *  \ingroup reductions
 *  \{
 */


/*! \p transform_reduce fuses the \p transform and \p reduce operations.
 *  \p transform_reduce is equivalent to performing a transformation defined by
 *  \p unary_op into a temporary sequence and then performing \p reduce on the
 *  transformed sequence. In most cases, fusing these two operations together is
 *  more efficient, since fewer memory reads and writes are required.
 *
 *  \p transform_reduce performs a reduction on the transformation of the
 *  sequence <tt>[first, last)</tt> according to \p unary_op. Specifically,
 *  \p unary_op is applied to each element of the sequence and then the result
 *  is reduced to a single value with \p binary_op using the initial value 
 *  \p init.  Note that the transformation \p unary_op is not applied to 
 *  the initial value \p init.  The order of reduction is not specified, 
 *  so \p binary_op must be both commutative and associative. 
 *
 *  The algorithm's execution is parallelized as determined by \p exec.
 *
 *  \param exec The execution policy to use for parallelization.
 *  \param first The beginning of the sequence.
 *  \param last The end of the sequence.
 *  \param unary_op The function to apply to each element of the input sequence.
 *  \param init The result is initialized to this value.
 *  \param binary_op The reduction operation.
 *  \return The result of the transformed reduction.
 *
 *  \tparam DerivedPolicy The name of the derived execution policy.
 *  \tparam InputIterator is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>,
 *          and \p InputIterator's \c value_type is convertible to \p UnaryFunction's \c argument_type.
 *  \tparam UnaryFunction is a model of <a href="http://www.sgi.com/tech/stl/UnaryFunction.html">Unary Function</a>,
 *          and \p UnaryFunction's \c result_type is convertible to \c OutputType.
 *  \tparam OutputType is a model of <a href="http://www.sgi.com/tech/stl/Assignable.html">Assignable</a>,
 *          and is convertible to \p BinaryFunction's \c first_argument_type and \c second_argument_type.
 *  \tparam BinaryFunction is a model of <a href="http://www.sgi.com/tech/stl/BinaryFunction.html">Binary Function</a>,
 *          and \p BinaryFunction's \c result_type is convertible to \p OutputType.
 *
 *  The following code snippet demonstrates how to use \p transform_reduce
 *  to compute the maximum value of the absolute value of the elements
 *  of a range using the \p thrust::host execution policy for parallelization:
 *
 *  \code
 *  #include <thrust/transform_reduce.h>
 *  #include <thrust/functional.h>
 *  #include <thrust/execution_policy.h>
 *
 *  template<typename T>
 *  struct absolute_value : public unary_function<T,T>
 *  {
 *    __host__ __device__ T operator()(const T &x) const
 *    {
 *      return x < T(0) ? -x : x;
 *    }
 *  };
 *
 *  ...
 *
 *  int data[6] = {-1, 0, -2, -2, 1, -3};
 *  int result = thrust::transform_reduce(thrust::host,
 *                                        data, data + 6,
 *                                        absolute_value<int>(),
 *                                        0,
 *                                        thrust::maximum<int>());
 *  // result == 3
 *  \endcode
 *
 *  \see \c transform
 *  \see \c reduce
 */
template<typename DerivedPolicy,
         typename InputIterator, 
         typename UnaryFunction, 
         typename OutputType,
         typename BinaryFunction>
  OutputType transform_reduce(const thrust::detail::execution_policy_base<DerivedPolicy> &exec,
                              InputIterator first,
                              InputIterator last,
                              UnaryFunction unary_op,
                              OutputType init,
                              BinaryFunction binary_op);


/*! \p transform_reduce fuses the \p transform and \p reduce operations.
 *  \p transform_reduce is equivalent to performing a transformation defined by
 *  \p unary_op into a temporary sequence and then performing \p reduce on the
 *  transformed sequence. In most cases, fusing these two operations together is
 *  more efficient, since fewer memory reads and writes are required.
 *
 *  \p transform_reduce performs a reduction on the transformation of the
 *  sequence <tt>[first, last)</tt> according to \p unary_op. Specifically,
 *  \p unary_op is applied to each element of the sequence and then the result
 *  is reduced to a single value with \p binary_op using the initial value 
 *  \p init.  Note that the transformation \p unary_op is not applied to 
 *  the initial value \p init.  The order of reduction is not specified, 
 *  so \p binary_op must be both commutative and associative. 
 *
 *  \param first The beginning of the sequence.
 *  \param last The end of the sequence.
 *  \param unary_op The function to apply to each element of the input sequence.
 *  \param init The result is initialized to this value.
 *  \param binary_op The reduction operation.
 *  \return The result of the transformed reduction.
 *
 *  \tparam InputIterator is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>,
 *          and \p InputIterator's \c value_type is convertible to \p UnaryFunction's \c argument_type.
 *  \tparam UnaryFunction is a model of <a href="http://www.sgi.com/tech/stl/UnaryFunction.html">Unary Function</a>,
 *          and \p UnaryFunction's \c result_type is convertible to \c OutputType.
 *  \tparam OutputType is a model of <a href="http://www.sgi.com/tech/stl/Assignable.html">Assignable</a>,
 *          and is convertible to \p BinaryFunction's \c first_argument_type and \c second_argument_type.
 *  \tparam BinaryFunction is a model of <a href="http://www.sgi.com/tech/stl/BinaryFunction.html">Binary Function</a>,
 *          and \p BinaryFunction's \c result_type is convertible to \p OutputType.
 *
 *  The following code snippet demonstrates how to use \p transform_reduce
 *  to compute the maximum value of the absolute value of the elements
 *  of a range.
 *
 *  \code
 *  #include <thrust/transform_reduce.h>
 *  #include <thrust/functional.h>
 *
 *  template<typename T>
 *  struct absolute_value : public unary_function<T,T>
 *  {
 *    __host__ __device__ T operator()(const T &x) const
 *    {
 *      return x < T(0) ? -x : x;
 *    }
 *  };
 *
 *  ...
 *
 *  int data[6] = {-1, 0, -2, -2, 1, -3};
 *  int result = thrust::transform_reduce(data, data + 6,
 *                                        absolute_value<int>(),
 *                                        0,
 *                                        thrust::maximum<int>());
 *  // result == 3
 *  \endcode
 *
 *  \see \c transform
 *  \see \c reduce
 */
template<typename InputIterator, 
         typename UnaryFunction, 
         typename OutputType,
         typename BinaryFunction>
  OutputType transform_reduce(InputIterator first,
                              InputIterator last,
                              UnaryFunction unary_op,
                              OutputType init,
                              BinaryFunction binary_op);


/*! \} // end transformed_reductions
 *  \} // end reductions
 */


} // end namespace thrust

#include <thrust/detail/transform_reduce.inl>