/usr/include/thrust/reduce.h is in libthrust-dev 1.7.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 | /*
* Copyright 2008-2012 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*! \file reduce.h
* \brief Functions for reducing a range to a single value
*/
#pragma once
#include <thrust/detail/config.h>
#include <thrust/detail/execution_policy.h>
#include <thrust/iterator/iterator_traits.h>
#include <thrust/pair.h>
namespace thrust
{
/*! \addtogroup reductions
* \{
*/
/*! \p reduce is a generalization of summation: it computes the sum (or some
* other binary operation) of all the elements in the range <tt>[first,
* last)</tt>. This version of \p reduce uses \c 0 as the initial value of the
* reduction. \p reduce is similar to the C++ Standard Template Library's
* <tt>std::accumulate</tt>. The primary difference between the two functions
* is that <tt>std::accumulate</tt> guarantees the order of summation, while
* \p reduce requires associativity of the binary operation to parallelize
* the reduction.
*
* Note that \p reduce also assumes that the binary reduction operator (in this
* case operator+) is commutative. If the reduction operator is not commutative
* then \p thrust::reduce should not be used. Instead, one could use
* \p inclusive_scan (which does not require commutativity) and select the
* last element of the output array.
*
* The algorithm's execution is parallelized as determined by \p exec.
*
* \param exec The execution policy to use for parallelization.
* \param first The beginning of the sequence.
* \param last The end of the sequence.
* \return The result of the reduction.
*
* \tparam DerivedPolicy The name of the derived execution policy.
* \tparam InputIterator is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>
* and if \c x and \c y are objects of \p InputIterator's \c value_type,
* then <tt>x + y</tt> is defined and is convertible to \p InputIterator's
* \c value_type. If \c T is \c InputIterator's \c value_type, then
* <tt>T(0)</tt> is defined.
*
* The following code snippet demonstrates how to use \p reduce to compute
* the sum of a sequence of integers using the \p thrust::host execution policy for parallelization:
*
* \code
* #include <thrust/reduce.h>
* #include <thrust/execution_policy.h>
* ...
* int data[6] = {1, 0, 2, 2, 1, 3};
* int result = thrust::reduce(thrust::host, data, data + 6);
*
* // result == 9
* \endcode
*
* \see http://www.sgi.com/tech/stl/accumulate.html
*/
template<typename DerivedPolicy, typename InputIterator>
typename thrust::iterator_traits<InputIterator>::value_type
reduce(const thrust::detail::execution_policy_base<DerivedPolicy> &exec, InputIterator first, InputIterator last);
/*! \p reduce is a generalization of summation: it computes the sum (or some
* other binary operation) of all the elements in the range <tt>[first,
* last)</tt>. This version of \p reduce uses \c 0 as the initial value of the
* reduction. \p reduce is similar to the C++ Standard Template Library's
* <tt>std::accumulate</tt>. The primary difference between the two functions
* is that <tt>std::accumulate</tt> guarantees the order of summation, while
* \p reduce requires associativity of the binary operation to parallelize
* the reduction.
*
* Note that \p reduce also assumes that the binary reduction operator (in this
* case operator+) is commutative. If the reduction operator is not commutative
* then \p thrust::reduce should not be used. Instead, one could use
* \p inclusive_scan (which does not require commutativity) and select the
* last element of the output array.
*
* \param first The beginning of the sequence.
* \param last The end of the sequence.
* \return The result of the reduction.
*
* \tparam InputIterator is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>
* and if \c x and \c y are objects of \p InputIterator's \c value_type,
* then <tt>x + y</tt> is defined and is convertible to \p InputIterator's
* \c value_type. If \c T is \c InputIterator's \c value_type, then
* <tt>T(0)</tt> is defined.
*
* The following code snippet demonstrates how to use \p reduce to compute
* the sum of a sequence of integers.
*
* \code
* #include <thrust/reduce.h>
* ...
* int data[6] = {1, 0, 2, 2, 1, 3};
* int result = thrust::reduce(data, data + 6);
*
* // result == 9
* \endcode
*
* \see http://www.sgi.com/tech/stl/accumulate.html
*/
template<typename InputIterator> typename
thrust::iterator_traits<InputIterator>::value_type reduce(InputIterator first, InputIterator last);
/*! \p reduce is a generalization of summation: it computes the sum (or some
* other binary operation) of all the elements in the range <tt>[first,
* last)</tt>. This version of \p reduce uses \p init as the initial value of the
* reduction. \p reduce is similar to the C++ Standard Template Library's
* <tt>std::accumulate</tt>. The primary difference between the two functions
* is that <tt>std::accumulate</tt> guarantees the order of summation, while
* \p reduce requires associativity of the binary operation to parallelize
* the reduction.
*
* Note that \p reduce also assumes that the binary reduction operator (in this
* case operator+) is commutative. If the reduction operator is not commutative
* then \p thrust::reduce should not be used. Instead, one could use
* \p inclusive_scan (which does not require commutativity) and select the
* last element of the output array.
*
* The algorithm's execution is parallelized as determined by \p exec.
*
* \param exec The execution policy to use for parallelization.
* \param first The beginning of the input sequence.
* \param last The end of the input sequence.
* \param init The initial value.
* \return The result of the reduction.
*
* \tparam DerivedPolicy The name of the derived execution policy.
* \tparam InputIterator is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>
* and if \c x and \c y are objects of \p InputIterator's \c value_type,
* then <tt>x + y</tt> is defined and is convertible to \p T.
* \tparam T is convertible to \p InputIterator's \c value_type.
*
* The following code snippet demonstrates how to use \p reduce to compute
* the sum of a sequence of integers including an intialization value using the \p thrust::host
* execution policy for parallelization:
*
* \code
* #include <thrust/reduce.h>
* #include <thrust/execution_policy.h>
* ...
* int data[6] = {1, 0, 2, 2, 1, 3};
* int result = thrust::reduce(thrust::host, data, data + 6, 1);
*
* // result == 10
* \endcode
*
* \see http://www.sgi.com/tech/stl/accumulate.html
*/
template<typename DerivedPolicy, typename InputIterator, typename T>
T reduce(const thrust::detail::execution_policy_base<DerivedPolicy> &exec,
InputIterator first,
InputIterator last,
T init);
/*! \p reduce is a generalization of summation: it computes the sum (or some
* other binary operation) of all the elements in the range <tt>[first,
* last)</tt>. This version of \p reduce uses \p init as the initial value of the
* reduction. \p reduce is similar to the C++ Standard Template Library's
* <tt>std::accumulate</tt>. The primary difference between the two functions
* is that <tt>std::accumulate</tt> guarantees the order of summation, while
* \p reduce requires associativity of the binary operation to parallelize
* the reduction.
*
* Note that \p reduce also assumes that the binary reduction operator (in this
* case operator+) is commutative. If the reduction operator is not commutative
* then \p thrust::reduce should not be used. Instead, one could use
* \p inclusive_scan (which does not require commutativity) and select the
* last element of the output array.
*
* \param first The beginning of the input sequence.
* \param last The end of the input sequence.
* \param init The initial value.
* \return The result of the reduction.
*
* \tparam InputIterator is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>
* and if \c x and \c y are objects of \p InputIterator's \c value_type,
* then <tt>x + y</tt> is defined and is convertible to \p T.
* \tparam T is convertible to \p InputIterator's \c value_type.
*
* The following code snippet demonstrates how to use \p reduce to compute
* the sum of a sequence of integers including an intialization value.
*
* \code
* #include <thrust/reduce.h>
* ...
* int data[6] = {1, 0, 2, 2, 1, 3};
* int result = thrust::reduce(data, data + 6, 1);
*
* // result == 10
* \endcode
*
* \see http://www.sgi.com/tech/stl/accumulate.html
*/
template<typename InputIterator, typename T>
T reduce(InputIterator first,
InputIterator last,
T init);
/*! \p reduce is a generalization of summation: it computes the sum (or some
* other binary operation) of all the elements in the range <tt>[first,
* last)</tt>. This version of \p reduce uses \p init as the initial value of the
* reduction and \p binary_op as the binary function used for summation. \p reduce
* is similar to the C++ Standard Template Library's <tt>std::accumulate</tt>.
* The primary difference between the two functions is that <tt>std::accumulate</tt>
* guarantees the order of summation, while \p reduce requires associativity of
* \p binary_op to parallelize the reduction.
*
* Note that \p reduce also assumes that the binary reduction operator (in this
* case \p binary_op) is commutative. If the reduction operator is not commutative
* then \p thrust::reduce should not be used. Instead, one could use
* \p inclusive_scan (which does not require commutativity) and select the
* last element of the output array.
*
* The algorithm's execution is parallelized as determined by \p exec.
*
* \param exec The execution policy to use for parallelization.
* \param first The beginning of the input sequence.
* \param last The end of the input sequence.
* \param init The initial value.
* \param binary_op The binary function used to 'sum' values.
* \return The result of the reduction.
*
* \tparam DerivedPolicy The name of the derived execution policy.
* \tparam InputIterator is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>
* and \c InputIterator's \c value_type is convertible to \c T.
* \tparam T is a model of <a href="http://www.sgi.com/tech/stl/Assignable.html">Assignable</a>,
* and is convertible to \p BinaryFunction's \c first_argument_type and \c second_argument_type.
* \tparam BinaryFunction is a model of <a href="http://www.sgi.com/tech/stl/BinaryFunction.html">Binary Function</a>,
* and \p BinaryFunction's \c result_type is convertible to \p OutputType.
*
* The following code snippet demonstrates how to use \p reduce to
* compute the maximum value of a sequence of integers using the \p thrust::host execution policy
* for parallelization:
*
* \code
* #include <thrust/reduce.h>
* #include <thrust/functional.h>
* #include <thrust/execution_policy.h>
* ...
* int data[6] = {1, 0, 2, 2, 1, 3};
* int result = thrust::reduce(thrust::host,
* data, data + 6,
* -1,
* thrust::maximum<int>());
* // result == 3
* \endcode
*
* \see http://www.sgi.com/tech/stl/accumulate.html
* \see transform_reduce
*/
template<typename DerivedPolicy,
typename InputIterator,
typename T,
typename BinaryFunction>
T reduce(const thrust::detail::execution_policy_base<DerivedPolicy> &exec,
InputIterator first,
InputIterator last,
T init,
BinaryFunction binary_op);
/*! \p reduce is a generalization of summation: it computes the sum (or some
* other binary operation) of all the elements in the range <tt>[first,
* last)</tt>. This version of \p reduce uses \p init as the initial value of the
* reduction and \p binary_op as the binary function used for summation. \p reduce
* is similar to the C++ Standard Template Library's <tt>std::accumulate</tt>.
* The primary difference between the two functions is that <tt>std::accumulate</tt>
* guarantees the order of summation, while \p reduce requires associativity of
* \p binary_op to parallelize the reduction.
*
* Note that \p reduce also assumes that the binary reduction operator (in this
* case \p binary_op) is commutative. If the reduction operator is not commutative
* then \p thrust::reduce should not be used. Instead, one could use
* \p inclusive_scan (which does not require commutativity) and select the
* last element of the output array.
*
* \param first The beginning of the input sequence.
* \param last The end of the input sequence.
* \param init The initial value.
* \param binary_op The binary function used to 'sum' values.
* \return The result of the reduction.
*
* \tparam InputIterator is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>
* and \c InputIterator's \c value_type is convertible to \c T.
* \tparam T is a model of <a href="http://www.sgi.com/tech/stl/Assignable.html">Assignable</a>,
* and is convertible to \p BinaryFunction's \c first_argument_type and \c second_argument_type.
* \tparam BinaryFunction is a model of <a href="http://www.sgi.com/tech/stl/BinaryFunction.html">Binary Function</a>,
* and \p BinaryFunction's \c result_type is convertible to \p OutputType.
*
* The following code snippet demonstrates how to use \p reduce to
* compute the maximum value of a sequence of integers.
*
* \code
* #include <thrust/reduce.h>
* #include <thrust/functional.h>
* ...
* int data[6] = {1, 0, 2, 2, 1, 3};
* int result = thrust::reduce(data, data + 6,
* -1,
* thrust::maximum<int>());
* // result == 3
* \endcode
*
* \see http://www.sgi.com/tech/stl/accumulate.html
* \see transform_reduce
*/
template<typename InputIterator,
typename T,
typename BinaryFunction>
T reduce(InputIterator first,
InputIterator last,
T init,
BinaryFunction binary_op);
/*! \p reduce_by_key is a generalization of \p reduce to key-value pairs.
* For each group of consecutive keys in the range <tt>[keys_first, keys_last)</tt>
* that are equal, \p reduce_by_key copies the first element of the group to the
* \c keys_output. The corresponding values in the range are reduced using the
* \c plus and the result copied to \c values_output.
*
* This version of \p reduce_by_key uses the function object \c equal_to
* to test for equality and \c plus to reduce values with equal keys.
*
* The algorithm's execution is parallelized as determined by \p exec.
*
* \param exec The execution policy to use for parallelization.
* \param keys_first The beginning of the input key range.
* \param keys_last The end of the input key range.
* \param values_first The beginning of the input value range.
* \param keys_output The beginning of the output key range.
* \param values_output The beginning of the output value range.
* \return A pair of iterators at end of the ranges <tt>[keys_output, keys_output_last)</tt> and <tt>[values_output, values_output_last)</tt>.
*
* \tparam DerivedPolicy The name of the derived execution policy.
* \tparam InputIterator1 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>,
* \tparam InputIterator2 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>,
* \tparam OutputIterator1 is a model of <a href="http://www.sgi.com/tech/stl/OutputIterator.html">Output Iterator</a> and
* and \p InputIterator1's \c value_type is convertible to \c OutputIterator1's \c value_type.
* \tparam OutputIterator2 is a model of <a href="http://www.sgi.com/tech/stl/OutputIterator.html">Output Iterator</a> and
* and \p InputIterator2's \c value_type is convertible to \c OutputIterator2's \c value_type.
*
* \pre The input ranges shall not overlap either output range.
*
* The following code snippet demonstrates how to use \p reduce_by_key to
* compact a sequence of key/value pairs and sum values with equal keys using the \p thrust::host
* execution policy for parallelization:
*
* \code
* #include <thrust/reduce.h>
* #include <thrust/execution_policy.h>
* ...
* const int N = 7;
* int A[N] = {1, 3, 3, 3, 2, 2, 1}; // input keys
* int B[N] = {9, 8, 7, 6, 5, 4, 3}; // input values
* int C[N]; // output keys
* int D[N]; // output values
*
* thrust::pair<int*,int*> new_end;
* new_end = thrust::reduce_by_key(thrust::host, A, A + N, B, C, D);
*
* // The first four keys in C are now {1, 3, 2, 1} and new_end.first - C is 4.
* // The first four values in D are now {9, 21, 9, 3} and new_end.second - D is 4.
* \endcode
*
* \see reduce
* \see unique_copy
* \see unique_by_key
* \see unique_by_key_copy
*/
template<typename DerivedPolicy,
typename InputIterator1,
typename InputIterator2,
typename OutputIterator1,
typename OutputIterator2>
thrust::pair<OutputIterator1,OutputIterator2>
reduce_by_key(const thrust::detail::execution_policy_base<DerivedPolicy> &exec,
InputIterator1 keys_first,
InputIterator1 keys_last,
InputIterator2 values_first,
OutputIterator1 keys_output,
OutputIterator2 values_output);
/*! \p reduce_by_key is a generalization of \p reduce to key-value pairs.
* For each group of consecutive keys in the range <tt>[keys_first, keys_last)</tt>
* that are equal, \p reduce_by_key copies the first element of the group to the
* \c keys_output. The corresponding values in the range are reduced using the
* \c plus and the result copied to \c values_output.
*
* This version of \p reduce_by_key uses the function object \c equal_to
* to test for equality and \c plus to reduce values with equal keys.
*
* \param keys_first The beginning of the input key range.
* \param keys_last The end of the input key range.
* \param values_first The beginning of the input value range.
* \param keys_output The beginning of the output key range.
* \param values_output The beginning of the output value range.
* \return A pair of iterators at end of the ranges <tt>[keys_output, keys_output_last)</tt> and <tt>[values_output, values_output_last)</tt>.
*
* \tparam InputIterator1 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>,
* \tparam InputIterator2 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>,
* \tparam OutputIterator1 is a model of <a href="http://www.sgi.com/tech/stl/OutputIterator.html">Output Iterator</a> and
* and \p InputIterator1's \c value_type is convertible to \c OutputIterator1's \c value_type.
* \tparam OutputIterator2 is a model of <a href="http://www.sgi.com/tech/stl/OutputIterator.html">Output Iterator</a> and
* and \p InputIterator2's \c value_type is convertible to \c OutputIterator2's \c value_type.
*
* \pre The input ranges shall not overlap either output range.
*
* The following code snippet demonstrates how to use \p reduce_by_key to
* compact a sequence of key/value pairs and sum values with equal keys.
*
* \code
* #include <thrust/reduce.h>
* ...
* const int N = 7;
* int A[N] = {1, 3, 3, 3, 2, 2, 1}; // input keys
* int B[N] = {9, 8, 7, 6, 5, 4, 3}; // input values
* int C[N]; // output keys
* int D[N]; // output values
*
* thrust::pair<int*,int*> new_end;
* new_end = thrust::reduce_by_key(A, A + N, B, C, D);
*
* // The first four keys in C are now {1, 3, 2, 1} and new_end.first - C is 4.
* // The first four values in D are now {9, 21, 9, 3} and new_end.second - D is 4.
* \endcode
*
* \see reduce
* \see unique_copy
* \see unique_by_key
* \see unique_by_key_copy
*/
template <typename InputIterator1,
typename InputIterator2,
typename OutputIterator1,
typename OutputIterator2>
thrust::pair<OutputIterator1,OutputIterator2>
reduce_by_key(InputIterator1 keys_first,
InputIterator1 keys_last,
InputIterator2 values_first,
OutputIterator1 keys_output,
OutputIterator2 values_output);
/*! \p reduce_by_key is a generalization of \p reduce to key-value pairs.
* For each group of consecutive keys in the range <tt>[keys_first, keys_last)</tt>
* that are equal, \p reduce_by_key copies the first element of the group to the
* \c keys_output. The corresponding values in the range are reduced using the
* \c plus and the result copied to \c values_output.
*
* This version of \p reduce_by_key uses the function object \c binary_pred
* to test for equality and \c plus to reduce values with equal keys.
*
* The algorithm's execution is parallelized as determined by \p exec.
*
* \param exec The execution policy to use for parallelization.
* \param keys_first The beginning of the input key range.
* \param keys_last The end of the input key range.
* \param values_first The beginning of the input value range.
* \param keys_output The beginning of the output key range.
* \param values_output The beginning of the output value range.
* \param binary_pred The binary predicate used to determine equality.
* \return A pair of iterators at end of the ranges <tt>[keys_output, keys_output_last)</tt> and <tt>[values_output, values_output_last)</tt>.
*
* \tparam DerivedPolicy The name of the derived execution policy.
* \tparam InputIterator1 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>,
* \tparam InputIterator2 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>,
* \tparam OutputIterator1 is a model of <a href="http://www.sgi.com/tech/stl/OutputIterator.html">Output Iterator</a> and
* and \p InputIterator1's \c value_type is convertible to \c OutputIterator1's \c value_type.
* \tparam OutputIterator2 is a model of <a href="http://www.sgi.com/tech/stl/OutputIterator.html">Output Iterator</a> and
* and \p InputIterator2's \c value_type is convertible to \c OutputIterator2's \c value_type.
* \tparam BinaryPredicate is a model of <a href="http://www.sgi.com/tech/stl/BinaryPredicate.html">Binary Predicate</a>.
*
* \pre The input ranges shall not overlap either output range.
*
* The following code snippet demonstrates how to use \p reduce_by_key to
* compact a sequence of key/value pairs and sum values with equal keys using the \p thrust::host
* execution policy for parallelization:
*
* \code
* #include <thrust/reduce.h>
* #include <thrust/execution_policy.h>
* ...
* const int N = 7;
* int A[N] = {1, 3, 3, 3, 2, 2, 1}; // input keys
* int B[N] = {9, 8, 7, 6, 5, 4, 3}; // input values
* int C[N]; // output keys
* int D[N]; // output values
*
* thrust::pair<int*,int*> new_end;
* thrust::equal_to<int> binary_pred;
* new_end = thrust::reduce_by_key(thrust::host, A, A + N, B, C, D, binary_pred);
*
* // The first four keys in C are now {1, 3, 2, 1} and new_end.first - C is 4.
* // The first four values in D are now {9, 21, 9, 3} and new_end.second - D is 4.
* \endcode
*
* \see reduce
* \see unique_copy
* \see unique_by_key
* \see unique_by_key_copy
*/
template<typename DerivedPolicy,
typename InputIterator1,
typename InputIterator2,
typename OutputIterator1,
typename OutputIterator2,
typename BinaryPredicate>
thrust::pair<OutputIterator1,OutputIterator2>
reduce_by_key(const thrust::detail::execution_policy_base<DerivedPolicy> &exec,
InputIterator1 keys_first,
InputIterator1 keys_last,
InputIterator2 values_first,
OutputIterator1 keys_output,
OutputIterator2 values_output,
BinaryPredicate binary_pred);
/*! \p reduce_by_key is a generalization of \p reduce to key-value pairs.
* For each group of consecutive keys in the range <tt>[keys_first, keys_last)</tt>
* that are equal, \p reduce_by_key copies the first element of the group to the
* \c keys_output. The corresponding values in the range are reduced using the
* \c plus and the result copied to \c values_output.
*
* This version of \p reduce_by_key uses the function object \c binary_pred
* to test for equality and \c plus to reduce values with equal keys.
*
* \param keys_first The beginning of the input key range.
* \param keys_last The end of the input key range.
* \param values_first The beginning of the input value range.
* \param keys_output The beginning of the output key range.
* \param values_output The beginning of the output value range.
* \param binary_pred The binary predicate used to determine equality.
* \return A pair of iterators at end of the ranges <tt>[keys_output, keys_output_last)</tt> and <tt>[values_output, values_output_last)</tt>.
*
* \tparam InputIterator1 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>,
* \tparam InputIterator2 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>,
* \tparam OutputIterator1 is a model of <a href="http://www.sgi.com/tech/stl/OutputIterator.html">Output Iterator</a> and
* and \p InputIterator1's \c value_type is convertible to \c OutputIterator1's \c value_type.
* \tparam OutputIterator2 is a model of <a href="http://www.sgi.com/tech/stl/OutputIterator.html">Output Iterator</a> and
* and \p InputIterator2's \c value_type is convertible to \c OutputIterator2's \c value_type.
* \tparam BinaryPredicate is a model of <a href="http://www.sgi.com/tech/stl/BinaryPredicate.html">Binary Predicate</a>.
*
* \pre The input ranges shall not overlap either output range.
*
* The following code snippet demonstrates how to use \p reduce_by_key to
* compact a sequence of key/value pairs and sum values with equal keys.
*
* \code
* #include <thrust/reduce.h>
* ...
* const int N = 7;
* int A[N] = {1, 3, 3, 3, 2, 2, 1}; // input keys
* int B[N] = {9, 8, 7, 6, 5, 4, 3}; // input values
* int C[N]; // output keys
* int D[N]; // output values
*
* thrust::pair<int*,int*> new_end;
* thrust::equal_to<int> binary_pred;
* new_end = thrust::reduce_by_key(A, A + N, B, C, D, binary_pred);
*
* // The first four keys in C are now {1, 3, 2, 1} and new_end.first - C is 4.
* // The first four values in D are now {9, 21, 9, 3} and new_end.second - D is 4.
* \endcode
*
* \see reduce
* \see unique_copy
* \see unique_by_key
* \see unique_by_key_copy
*/
template <typename InputIterator1,
typename InputIterator2,
typename OutputIterator1,
typename OutputIterator2,
typename BinaryPredicate>
thrust::pair<OutputIterator1,OutputIterator2>
reduce_by_key(InputIterator1 keys_first,
InputIterator1 keys_last,
InputIterator2 values_first,
OutputIterator1 keys_output,
OutputIterator2 values_output,
BinaryPredicate binary_pred);
/*! \p reduce_by_key is a generalization of \p reduce to key-value pairs.
* For each group of consecutive keys in the range <tt>[keys_first, keys_last)</tt>
* that are equal, \p reduce_by_key copies the first element of the group to the
* \c keys_output. The corresponding values in the range are reduced using the
* \c BinaryFunction \c binary_op and the result copied to \c values_output.
* Specifically, if consecutive key iterators \c i and \c (i + 1) are
* such that <tt>binary_pred(*i, *(i+1))</tt> is \c true, then the corresponding
* values are reduced to a single value with \c binary_op.
*
* This version of \p reduce_by_key uses the function object \c binary_pred
* to test for equality and \c binary_op to reduce values with equal keys.
*
* The algorithm's execution is parallelized as determined by \p exec.
*
* \param exec The execution policy to use for parallelization.
* \param keys_first The beginning of the input key range.
* \param keys_last The end of the input key range.
* \param values_first The beginning of the input value range.
* \param keys_output The beginning of the output key range.
* \param values_output The beginning of the output value range.
* \param binary_pred The binary predicate used to determine equality.
* \param binary_op The binary function used to accumulate values.
* \return A pair of iterators at end of the ranges <tt>[keys_output, keys_output_last)</tt> and <tt>[values_output, values_output_last)</tt>.
*
* \tparam DerivedPolicy The name of the derived execution policy.
* \tparam InputIterator1 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>,
* \tparam InputIterator2 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>,
* \tparam OutputIterator1 is a model of <a href="http://www.sgi.com/tech/stl/OutputIterator.html">Output Iterator</a> and
* and \p InputIterator1's \c value_type is convertible to \c OutputIterator1's \c value_type.
* \tparam OutputIterator2 is a model of <a href="http://www.sgi.com/tech/stl/OutputIterator.html">Output Iterator</a> and
* and \p InputIterator2's \c value_type is convertible to \c OutputIterator2's \c value_type.
* \tparam BinaryPredicate is a model of <a href="http://www.sgi.com/tech/stl/BinaryPredicate.html">Binary Predicate</a>.
* \tparam BinaryFunction is a model of <a href="http://www.sgi.com/tech/stl/BinaryFunction.html">Binary Function</a>
* and \c BinaryFunction's \c result_type is convertible to \c OutputIterator2's \c value_type.
*
* \pre The input ranges shall not overlap either output range.
*
* The following code snippet demonstrates how to use \p reduce_by_key to
* compact a sequence of key/value pairs and sum values with equal keys using the \p thrust::host
* execution policy for parallelization:
*
* \code
* #include <thrust/reduce.h>
* #include <thrust/execution_policy.h>
* ...
* const int N = 7;
* int A[N] = {1, 3, 3, 3, 2, 2, 1}; // input keys
* int B[N] = {9, 8, 7, 6, 5, 4, 3}; // input values
* int C[N]; // output keys
* int D[N]; // output values
*
* thrust::pair<int*,int*> new_end;
* thrust::equal_to<int> binary_pred;
* thrust::plus<int> binary_op;
* new_end = thrust::reduce_by_key(thrust::host, A, A + N, B, C, D, binary_pred, binary_op);
*
* // The first four keys in C are now {1, 3, 2, 1} and new_end.first - C is 4.
* // The first four values in D are now {9, 21, 9, 3} and new_end.second - D is 4.
* \endcode
*
* \see reduce
* \see unique_copy
* \see unique_by_key
* \see unique_by_key_copy
*/
template<typename DerivedPolicy,
typename InputIterator1,
typename InputIterator2,
typename OutputIterator1,
typename OutputIterator2,
typename BinaryPredicate,
typename BinaryFunction>
thrust::pair<OutputIterator1,OutputIterator2>
reduce_by_key(const thrust::detail::execution_policy_base<DerivedPolicy> &exec,
InputIterator1 keys_first,
InputIterator1 keys_last,
InputIterator2 values_first,
OutputIterator1 keys_output,
OutputIterator2 values_output,
BinaryPredicate binary_pred,
BinaryFunction binary_op);
/*! \p reduce_by_key is a generalization of \p reduce to key-value pairs.
* For each group of consecutive keys in the range <tt>[keys_first, keys_last)</tt>
* that are equal, \p reduce_by_key copies the first element of the group to the
* \c keys_output. The corresponding values in the range are reduced using the
* \c BinaryFunction \c binary_op and the result copied to \c values_output.
* Specifically, if consecutive key iterators \c i and \c (i + 1) are
* such that <tt>binary_pred(*i, *(i+1))</tt> is \c true, then the corresponding
* values are reduced to a single value with \c binary_op.
*
* This version of \p reduce_by_key uses the function object \c binary_pred
* to test for equality and \c binary_op to reduce values with equal keys.
*
* \param keys_first The beginning of the input key range.
* \param keys_last The end of the input key range.
* \param values_first The beginning of the input value range.
* \param keys_output The beginning of the output key range.
* \param values_output The beginning of the output value range.
* \param binary_pred The binary predicate used to determine equality.
* \param binary_op The binary function used to accumulate values.
* \return A pair of iterators at end of the ranges <tt>[keys_output, keys_output_last)</tt> and <tt>[values_output, values_output_last)</tt>.
*
* \tparam InputIterator1 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>,
* \tparam InputIterator2 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>,
* \tparam OutputIterator1 is a model of <a href="http://www.sgi.com/tech/stl/OutputIterator.html">Output Iterator</a> and
* and \p InputIterator1's \c value_type is convertible to \c OutputIterator1's \c value_type.
* \tparam OutputIterator2 is a model of <a href="http://www.sgi.com/tech/stl/OutputIterator.html">Output Iterator</a> and
* and \p InputIterator2's \c value_type is convertible to \c OutputIterator2's \c value_type.
* \tparam BinaryPredicate is a model of <a href="http://www.sgi.com/tech/stl/BinaryPredicate.html">Binary Predicate</a>.
* \tparam BinaryFunction is a model of <a href="http://www.sgi.com/tech/stl/BinaryFunction.html">Binary Function</a>
* and \c BinaryFunction's \c result_type is convertible to \c OutputIterator2's \c value_type.
*
* \pre The input ranges shall not overlap either output range.
*
* The following code snippet demonstrates how to use \p reduce_by_key to
* compact a sequence of key/value pairs and sum values with equal keys.
*
* \code
* #include <thrust/reduce.h>
* ...
* const int N = 7;
* int A[N] = {1, 3, 3, 3, 2, 2, 1}; // input keys
* int B[N] = {9, 8, 7, 6, 5, 4, 3}; // input values
* int C[N]; // output keys
* int D[N]; // output values
*
* thrust::pair<int*,int*> new_end;
* thrust::equal_to<int> binary_pred;
* thrust::plus<int> binary_op;
* new_end = thrust::reduce_by_key(A, A + N, B, C, D, binary_pred, binary_op);
*
* // The first four keys in C are now {1, 3, 2, 1} and new_end.first - C is 4.
* // The first four values in D are now {9, 21, 9, 3} and new_end.second - D is 4.
* \endcode
*
* \see reduce
* \see unique_copy
* \see unique_by_key
* \see unique_by_key_copy
*/
template <typename InputIterator1,
typename InputIterator2,
typename OutputIterator1,
typename OutputIterator2,
typename BinaryPredicate,
typename BinaryFunction>
thrust::pair<OutputIterator1,OutputIterator2>
reduce_by_key(InputIterator1 keys_first,
InputIterator1 keys_last,
InputIterator2 values_first,
OutputIterator1 keys_output,
OutputIterator2 values_output,
BinaryPredicate binary_pred,
BinaryFunction binary_op);
/*! \} // end reductions
*/
} // end namespace thrust
#include <thrust/detail/reduce.inl>
|