This file is indexed.

/usr/include/relion-1.3/src/matrix1d.h is in librelion-dev-common 1.3+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
/***************************************************************************
 *
 * Author: "Sjors H.W. Scheres"
 * MRC Laboratory of Molecular Biology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * This complete copyright notice must be included in any revised version of the
 * source code. Additional authorship citations may be added, but existing
 * author citations must be preserved.
 ***************************************************************************/
/***************************************************************************
 *
 * Authors:     Carlos Oscar S. Sorzano (coss@cnb.csic.es)
 *
 * Unidad de  Bioinformatica of Centro Nacional de Biotecnologia , CSIC
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
 * 02111-1307  USA
 *
 *  All comments concerning this program package may be sent to the
 *  e-mail address 'xmipp@cnb.csic.es'
 ***************************************************************************/

#ifndef MATRIX1D_H_
#define MATRIX1D_H_

#include "src/funcs.h"
#include "src/filename.h"

extern int bestPrecision(float F, int _width);
extern std::string floatToString(float F, int _width, int _prec);

template <typename T> class Matrix2D;

/** @defgroup Vectors Matrix1D Vectors
 * @ingroup DataLibrary
*/
//@{
/** @name Vectors speed up macros
 *
 * This macros are defined to allow high speed in critical parts of your
 * program. They shouldn't be used systematically as usually there is no
 * checking on the correctness of the operation you are performing. Speed comes
 * from three facts: first, they are macros and no function call is performed
 * (although most of the critical functions are inline functions), there is no
 * checking on the correctness of the operation (it could be wrong and you are
 * not warned of it), and destination vectors are not returned saving time in
 * the copy constructor and in the creation/destruction of temporary vectors.
 */
//@{
/** Array access.
 * This macro gives you access to the array (T)
 */
#define MATRIX1D_ARRAY(v) ((v).vdata)

/** For all elements in the array
 * This macro is used to generate loops for the vector in an easy manner. It
 * defines an internal index 'i' which ranges the vector using its mathematical
 * definition (ie, logical access).
 *
 * @code
 * FOR_ALL_ELEMENTS_IN_MATRIX1D(v)
 * {
 *     std::cout << v(i) << " ";
 * }
 * @endcode
 */
#define FOR_ALL_ELEMENTS_IN_MATRIX1D(v) \
    for (int i=0; i<v.vdim; i++)

/** X dimension of the matrix
 */
#define VEC_XSIZE(m) ((m).vdim)


/** Access to X component
 * @code
 * XX(v) = 1;
 * val = XX(v);
 * @endcode
 */
#define XX(v) (v).vdata[0]

/** Access to Y component
 * @code
 * YY(v) = 1;
 * val = YY(v);
 * @endcode
 */
#define YY(v) (v).vdata[1]

/** Access to Z component
 * @code
 * ZZ(v) = 1;
 * val = ZZ(v);
 * @endcode
 */
#define ZZ(v) (v).vdata[2]

/** Creates vector in R2
 * The vector must be created beforehand to the correct size. After this macro
 * the vector is (x, y) in R2.
 *
 * @code
 * MultidimArray< double > v(2);
 * VECTOR_R2(v, 1, 2);
 * @endcode
 */
#define VECTOR_R2(v, x, y) { \
        XX(v) = x; YY(v) = y; }

/** Creates vector in R3
 * The vector must be created beforehand to the correct size. After this macro
 * the vector is (x, y, z) in R3.
 *
 * @code
 * MultidimArray< double > v(3);
 * VECTOR_R2(v, 1, 2, 1);
 * @endcode
 */
#define VECTOR_R3(v, x, y, z) { \
        XX(v) = x; YY(v) = y; ZZ(v) = z;}

/** Adding two R2 vectors (a=b+c)
 * @code
 * MultidimArray< double > a(2), b(2), c(2);
 * ...;
 * V2_PLUS_V2(a, b, c);
 * @endcode
 */
#define V2_PLUS_V2(a, b, c) { \
        XX(a) = XX(b) + XX(c); \
        YY(a) = YY(b) + YY(c); }

/** Substracting two R2 vectors (a=b-c)
 * @code
 * MultidimArray< double > a(2), b(2), c(2);
 * ...;
 * V2_MINUS_V2(a, b, c);
 * @endcode
 */
#define V2_MINUS_V2(a, b, c) { \
        XX(a) = XX(b) - XX(c); \
        YY(a) = YY(b) - YY(c); }

/** Adding/substracting a constant to a R2 vector (a=b-k).
 * @code
 * MultidimArray< double > a(2), b(2);
 * double k;
 * ...;
 * V2_PLUS_CT(a, b, k);
 *
 * MultidimArray< double > a(2), b(2);
 * double k;
 * ...;
 * V2_PLUS_CT(a, b, -k);
 * @endcode
 */
#define V2_PLUS_CT(a, b, k) { \
        XX(a) = XX(b) + (k); \
        YY(a) = YY(b) + (k); }

/** Multiplying/dividing by a constant a R2 vector (a=b*k)
 * @code
 * MultidimArray< double > a(2), b(2);
 * double k;
 * ...;
 * V2_BY_CT(a, b, k);
 *
 * MultidimArray< double > a(2), b(2);
 * double k;
 * ...;
 * V2_BY_CT(a, b, 1/k);
 * @endcode
 */
#define V2_BY_CT(a, b, k) { \
        XX(a) = XX(b) * (k); \
        YY(a) = YY(b) * (k); }

/** Adding two R3 vectors (a=b+c)
 * @code
 * MultidimArray< double > a(3), b(3), c(3);
 * ...;
 * V3_PLUS_V3(a, b, c);
 * @endcode
 */
#define V3_PLUS_V3(a, b, c) { \
        XX(a) = XX(b) + XX(c); \
        YY(a) = YY(b) + YY(c); \
        ZZ(a) = ZZ(b) + ZZ(c); }

/** Substracting two R3 vectors (a=b-c)
 * @code
 * MultidimArray< double > a(3), b(3), c(3);
 * ...;
 * V3_MINUS_V3(a, b, c);
 * @endcode
 */
#define V3_MINUS_V3(a, b, c) { \
        XX(a) = XX(b) - XX(c); \
        YY(a) = YY(b) - YY(c); \
        ZZ(a) = ZZ(b) - ZZ(c); }

/** Adding/substracting a constant to a R3 vector (a=b-k)
 * @code
 * MultidimArray< double > a(3), b(3);
 * double k;
 * ...;
 * V3_PLUS_CT(a, b, k);
 *
 * MultidimArray< double > a(3), b(3);
 * double k;
 * ...;
 * V3_PLUS_CT(a, b, -k);
 * @endcode
 */
#define V3_PLUS_CT(a, b, c) { \
        XX(a) = XX(b) + (c); \
        YY(a) = YY(b) + (c); \
        ZZ(a) = ZZ(b) + (c); }

/** Multiplying/dividing by a constant a R3 vector (a=b*k)
 * @code
 * MultidimArray< double > a(3), b(3);
 * double k;
 * ...;
 * V3_BY_CT(a, b, k);
 *
 * MultidimArray< double > a(3), b(3);
 * double k;
 * ...;
 * V3_BY_CT(a, b, 1/k);
 * @endcode
 */
#define V3_BY_CT(a, b, c) { \
        XX(a) = XX(b) * (c); \
        YY(a) = YY(b) * (c); \
        ZZ(a) = ZZ(b) * (c); }

/** Direct access to vector element
 */
#define VEC_ELEM(v,i) ((v).vdata[(i)])
//@}

/** Matrix1D class.*/
template<typename T>
class Matrix1D
{
public:
    /// The array itself
    T* vdata;

    /// Destroy data
    bool destroyData;

    /// Number of elements
    int vdim;

    /// <0=column vector (default), 1=row vector
    bool row;

    /// @name Constructors
    //@{
    /** Empty constructor
     *
     * The empty constructor creates a vector with no memory associated,
     * origin=0, size=0, no statistics, ... You can choose between a column
     * vector (by default), or a row one.
     *
     * @code
     * Matrix1D< double > v1;
     * Matrix1D< double > v1(true);
     * // both are examples of empty column vectors
     *
     * Matrix1D< int > v1(false);
     * // empty row vector
     * @endcode
     */
    Matrix1D(bool column = true)
    {
    	coreInit();
    	row = ! column;
    }

    /** Dimension constructor
     *
     * The dimension constructor creates a vector with memory associated (but
     * not assigned to anything, could be full of garbage) origin=0, size=the
     * given one. You can choose between a column vector (by default), or a row
     * one.
     *
     * @code
     * Matrix1D< double > v1(6);
     * Matrix1D< double > v1(6, 'y');
     * // both are examples of column vectors of dimensions 6
     *
     * Matrix1D< int > v1('n');
     * // empty row vector
     * @endcode
     */
    Matrix1D(int dim, bool column = true)
    {
    	coreInit();
    	row = ! column;
        resize(dim);
    }

    /** Copy constructor
     *
     * The created vector is a perfect copy of the input vector but with a
     * different memory assignment.
     *
     * @code
     * Matrix1D< double > v2(v1);
     * @endcode
     */
    Matrix1D(const Matrix1D<T>& v)
    {
        coreInit();
        *this = v;
    }

    /** Destructor.
     */
     ~Matrix1D()
     {
        coreDeallocate();
     }

     /** Assignment.
      *
      * You can build as complex assignment expressions as you like. Multiple
      * assignment is allowed.
      *
      * @code
      * v1 = v2 + v3;
      * v1 = v2 = v3;
      * @endcode
      */
     Matrix1D<T>& operator=(const Matrix1D<T>& op1)
     {
         if (&op1 != this)
         {
             resize(op1);
             for (int i = 0; i < vdim; i++)
             	vdata[i] = op1.vdata[i];
             row=op1.row;
         }

         return *this;
     }
     //@}

     /// @name Core memory operations for Matrix1D
     //@{
    /** Clear.
     */
     void clear()
     {
        coreDeallocate();
        coreInit();
     }

    /** Core init.
     * Initialize everything to 0
     */
    void coreInit()
    {
        vdim=0;
        row=false;
        vdata=NULL;
        destroyData=true;
    }

    /** Core allocate.
     */
    inline void coreAllocate(int _vdim)
    {
        if (_vdim<=0)
        {
            clear();
            return;
        }

        vdim=_vdim;
        vdata = new T [vdim];
        if (vdata == NULL)
            REPORT_ERROR("Allocate: No space left");
    }

    /** Core deallocate.
     * Free all vdata.
     */
    inline void coreDeallocate()
    {
        if (vdata != NULL && destroyData)
            delete[] vdata;
        vdata=NULL;
    }
    //@}

    ///@name Size and shape of Matrix1D
    //@{
    /** Resize to a given size
     *
     * This function resize the actual array to the given size. The origin is
     * not modified. If the actual array is larger than the pattern then the
     * values outside the new size are lost, if it is smaller then 0's are
     * added. An exception is thrown if there is no memory.
     *
     * @code
     * V1.resize(3, 3, 2);
     * @endcode
     */
    inline void resize(int Xdim)
    {
        if (Xdim == vdim)
            return;

        if (Xdim <= 0)
        {
            clear();
            return;
        }

        T * new_vdata;
        try
        {
        	new_vdata = new T [Xdim];
        }
        catch (std::bad_alloc &)
        {
			REPORT_ERROR("Allocate: No space left");
        }

		// Copy needed elements, fill with 0 if necessary
		for (int j = 0; j < Xdim; j++)
		{
			T val;
			if (j >= vdim)
				val = 0;
			else
				val = vdata[j];
			new_vdata[j] = val;
		}

		// deallocate old vector
		coreDeallocate();

		// assign *this vector to the newly created
		vdata = new_vdata;
		vdim = Xdim;

    }

    /** Resize according to a pattern.
     *
     * This function resize the actual array to the same size
     * as the input pattern. If the actual array is larger than the pattern
     * then the trailing values are lost, if it is smaller then 0's are
     * added at the end
     *
     * @code
     * v2.resize(v1);
     * // v2 has got now the same structure as v1
     * @endcode
     */
    template<typename T1>
    void resize(const Matrix1D<T1> &v)
    {
        if (vdim != v.vdim)
            resize(v.vdim);
    }

    /** Same shape.
     *
     * Returns true if this object has got the same shape (origin and size)
     * than the argument
     */
    template <typename T1>
    bool sameShape(const Matrix1D<T1>& op) const
    {
        return (vdim == op.vdim);
    }

    /** Returns the size of this vector
     *
     * @code
     * int nn = a.size();
     * @endcode
     */
    inline int size() const
    {
        return vdim;
    }

    /** True if vector is a row.
     *
     * @code
     * if (v.isRow())
     *     std::cout << "v is a row vector\n";
     * @endcode
     */
    int isRow() const
    {
        return row;
    }

    /** True if vector is a column
     *
     * @code
     * if (v.isCol())
     *     std::cout << "v is a column vector\n";
     * @endcode
     */
    int  isCol()  const
    {
        return !row;
    }

    /** Forces the vector to be a row vector
     *
     * @code
     * v.setRow();
     * @endcode
     */
    void setRow()
    {
        row = true;
    }

    /** Forces the vector to be a column vector
     *
     * @code
     * v.setCol();
     * @endcode
     */
    void setCol()
    {
        row = false;
    }
    //@}

    /// @name Initialization of Matrix1D values
    //@{
    /** Same value in all components.
     *
     * The constant must be of a type compatible with the array type, ie,
     * you cannot  assign a double to an integer array without a casting.
     * It is not an error if the array is empty, then nothing is done.
     *
     * @code
     * v.initConstant(3.14);
     * @endcode
     */
    void initConstant(T val)
    {
    	for (int j = 0; j < vdim; j++)
    	{
    		vdata[j] = val;
    	}
    }

    /** Initialize to zeros with current size.
     *
     * All values are set to 0. The current size and origin are kept. It is not
     * an error if the array is empty, then nothing is done.
     *
     * @code
     * v.initZeros();
     * @endcode
     */
    void initZeros()
    {
        memset(vdata,0,vdim*sizeof(T));
    }

    /** Initialize to zeros with a given size.
     */
    void initZeros(int Xdim)
    {
    	if (vdim!=Xdim)
    		resize(Xdim);
        memset(vdata,0,vdim*sizeof(T));
    }

    /** Initialize to zeros following a pattern.
      *
      * All values are set to 0, and the origin and size of the pattern are
      * adopted.
      *
      * @code
      * v2.initZeros(v1);
      * @endcode
      */
    template <typename T1>
    void initZeros(const Matrix1D<T1>& op)
    {
    	if (vdim!=op.vdim)
    		resize(op);
        memset(vdata,0,vdim*sizeof(T));
	}
    //@}

	/// @name Matrix1D operators
    //@{
    /** v3 = v1 * k.
     */
    Matrix1D<T> operator*(T op1) const
    {
        Matrix1D<T> tmp(*this);
        for (int i=0; i < vdim; i++)
        	tmp.vdata[i] = vdata[i] * op1;
        return tmp;
    }

    /** v3 = v1 / k.
     */
    Matrix1D<T> operator/(T op1) const
    {
        Matrix1D<T> tmp(*this);
        for (int i=0; i < vdim; i++)
        	tmp.vdata[i] = vdata[i] / op1;
        return tmp;
    }

    /** v3 = v1 + k.
     */
    Matrix1D<T> operator+(T op1) const
    {
        Matrix1D<T> tmp(*this);
        for (int i=0; i < vdim; i++)
        	tmp.vdata[i] = vdata[i] + op1;
        return tmp;
    }

    /** v3 = v1 - k.
     */
    Matrix1D<T> operator-(T op1) const
    {
        Matrix1D<T> tmp(*this);
        for (int i=0; i < vdim; i++)
        	tmp.vdata[i] = vdata[i] - op1;
        return tmp;
    }

    /** v3 = k * v2.
     */
    friend Matrix1D<T> operator*(T op1, const Matrix1D<T>& op2)
    {
        Matrix1D<T> tmp(op2);
        for (int i=0; i < op2.vdim; i++)
        	tmp.vdata[i] = op1 * op2.vdata[i];
        return tmp;
    }

    /** v3 = k / v2.
     */
    friend Matrix1D<T> operator/(T op1, const Matrix1D<T>& op2)
    {
        Matrix1D<T> tmp(op2);
        for (int i=0; i < op2.vdim; i++)
        	tmp.vdata[i] = op1 / op2.vdata[i];
        return tmp;
    }

    /** v3 = k + v2.
     */
    friend Matrix1D<T> operator+(T op1, const Matrix1D<T>& op2)
    {
        Matrix1D<T> tmp(op2);
        for (int i=0; i < op2.vdim; i++)
        	tmp.vdata[i] = op1 + op2.vdata[i];
        return tmp;
    }

    /** Vector summation
     *
     * @code
     * A += B;
     * @endcode
     */
    void operator+=(const Matrix1D<T>& op1) const
    {
        if (vdim != op1.vdim)
            REPORT_ERROR("Not same sizes in vector summation");

        for (int i = 0; i < vdim; i++)
        	vdata[i] += op1.vdata[i];
    }

    /** v3 = k - v2.
     */
    friend Matrix1D<T> operator-(T op1, const Matrix1D<T>& op2)
    {
        Matrix1D<T> tmp(op2);
        for (int i=0; i < op2.vdim; i++)
        	tmp.vdata[i] = op1 - op2.vdata[i];
        return tmp;
    }

    /** Vector substraction
     *
     * @code
     * A -= B;
     * @endcode
     */
    void operator-=(const Matrix1D<T>& op1) const
    {
        if (vdim != op1.vdim)
            REPORT_ERROR("Not same sizes in vector summation");

        for (int i = 0; i < vdim; i++)
        	vdata[i] -= op1.vdata[i];
    }

    /** v3 *= k.
     */
    void operator*=(T op1)
    {
        for (int i=0; i < vdim; i++)
        	vdata[i] *= op1;
    }

    /** v3 /= k.
      */
     void operator/=(T op1)
     {
         for (int i=0; i < vdim; i++)
         	vdata[i] /= op1;
     }

     /** v3 += k.
     */
    void operator+=(T op1)
    {
        for (int i=0; i < vdim; i++)
        	vdata[i] += op1;
    }

    /** v3 -= k.
      */
     void operator-=(T op1)
     {
         for (int i=0; i < vdim; i++)
         	vdata[i] -= op1;
     }

     /** v3 = v1 * v2.
     */
     Matrix1D<T> operator*(const Matrix1D<T>& op1) const
    {
         Matrix1D<T> tmp(op1);
         for (int i=0; i < vdim; i++)
         	tmp.vdata[i] = vdata[i] * op1.vdata[i];
         return tmp;
    }

     /** v3 = v1 / v2.
     */
     Matrix1D<T> operator/(const Matrix1D<T>& op1) const
    {
         Matrix1D<T> tmp(op1);
         for (int i=0; i < vdim; i++)
         	tmp.vdata[i] = vdata[i] / op1.vdata[i];
         return tmp;
    }
     /** v3 = v1 + v2.
     */
     Matrix1D<T> operator+(const Matrix1D<T>& op1) const
    {
         Matrix1D<T> tmp(op1);
         for (int i=0; i < vdim; i++)
         	tmp.vdata[i] = vdata[i] + op1.vdata[i];
         return tmp;
    }

     /** v3 = v1 - v2.
     */
     Matrix1D<T> operator-(const Matrix1D<T>& op1) const
    {
         Matrix1D<T> tmp(op1);
         for (int i=0; i < vdim; i++)
         	tmp.vdata[i] = vdata[i] - op1.vdata[i];
         return tmp;
    }

     /** v3 *= v2.
     */
    void operator*=(const Matrix1D<T>& op1)
    {
        for (int i=0; i < vdim; i++)
        	vdata[i] *= op1.vdata[i];
    }

    /** v3 /= v2.
     */
    void operator/=(const Matrix1D<T>& op1)
    {
        for (int i=0; i < vdim; i++)
         	vdata[i] /= op1.vdata[i];
    }

     /** v3 += v2.
     */
    void operator+=(const Matrix1D<T>& op1)
    {
        for (int i=0; i < vdim; i++)
        	vdata[i] += op1.vdata[i];
    }

    /** v3 -= v2.
     */
    void operator-=(const Matrix1D<T>& op1)
    {
        for (int i=0; i < vdim; i++)
         	vdata[i] -= op1.vdata[i];
    }

    /** Unary minus.
     *
     * It is used to build arithmetic expressions. You can make a minus
     * of anything as long as it is correct semantically.
     *
     * @code
     * v1 = -v2;
     * v1 = -v2.transpose();
     * @endcode
     */
    Matrix1D<T> operator-() const
    {
        Matrix1D<T> tmp(*this);
        for (int i=0; i < vdim; i++)
         	tmp.vdata[i] = - vdata[i];
        return tmp;
    }

    /** Vector by matrix
     *
     * Algebraic vector by matrix multiplication. This function is actually
     * implemented in xmippMatrices2D
     */
    Matrix1D<T> operator*(const Matrix2D<T>& M);

    /** Vector element access
     *
     * Returns the value of a vector logical position. In our example we could
     * access from v(-2) to v(2). The elements can be used either by value or by
     * reference.
     *
     * @code
     * v(-2) = 1;
     * val = v(-2);
     * @endcode
     */
    T& operator()(int i) const
    {
        return vdata[i];
    }
    //@}

	/// @name Utilities for Matrix1D
    //@{

    /** Produce a vector suitable for working with Numerical Recipes
     *
     * This function must be used only as a preparation for routines which need
     * that the first physical index is 1 and not 0 as it usually is in C. In
     * fact the vector provided for Numerical recipes is exactly this same one
     * but with the indexes changed.
     *
     * This function is not ported to Python.
     */
    T* adaptForNumericalRecipes() const
    {
        return MATRIX1D_ARRAY(*this) - 1;
    }

    /** Kill an array produced for Numerical Recipes.
     *
     * Nothing needs to be done in fact.
     *
     * This function is not ported to Python.
     */
    void killAdaptationForNumericalRecipes(T* m) const
        {}

    /** CEILING
     *
     * Applies a CEILING (look for the nearest larger integer) to each
     * array element.
     */
    void selfCEIL()
    {
        for (int i=0; i < vdim; i++)
        	vdata[i] = CEIL(vdata[i]);
    }

    /** FLOOR
     *
     * Applies a FLOOR (look for the nearest larger integer) to each
     * array element.
     */
    void selfFLOOR()
    {
        for (int i=0; i < vdim; i++)
        	vdata[i] = FLOOR(vdata[i]);
    }

    /** ROUND
     *
     * Applies a ROUND (look for the nearest larger integer) to each
     * array element.
     */
    void selfROUND()
    {
        for (int i=0; i < vdim; i++)
        	vdata[i] = ROUND(vdata[i]);
    }

    /** Index for the maximum element.
     *
     * This function returns the index of the maximum element of an matrix1d.
     * Returns -1 if the array is empty
     */
    void maxIndex(int& jmax) const
    {
        if (vdim == 0)
        {
            jmax = -1;
            return;
        }

        jmax = 0;
        T maxval = (*this)(0);
        for (int j = 0; j < vdim; j++)
       	 if ( (*this)(j) > maxval )
       		 jmax =j;
    }

    /** Index for the minimum element.
     *
     * This function returns the index of the minimum element of an matrix1d.
     * Returns -1 if the array is empty
     */
    void minIndex(int& jmin) const
    {
        if (vdim == 0)
        {
            jmin = -1;
            return;
        }

        jmin = 0;
        T minval = (*this)(0);
        for (int j = 0; j < vdim; j++)
       	 if ( (*this)(j) < minval )
       		 jmin =j;
    }

    /** Algebraic transpose of vector
     *
     * You can use the transpose in as complex expressions as you like. The
     * origin of the vector is not changed.
     *
     * @code
     * v2 = v1.transpose();
     * @endcode
     */
    Matrix1D<T> transpose() const
    {
        Matrix1D<T> temp(*this);
        temp.selfTranspose();
        return temp;
    }

    /** Algebraic transpose of vector
     *
     * The same as before but the result is stored in this same object.
     */
    void selfTranspose()
    {
        row = !row;
    }

    /** Sum of vector values.
     *
     * This function returns the sum of all internal values.
     *
     * @code
     * double sum = m.sum();
     * @endcode
     */
    double sum(bool average=false) const
    {
        double sum = 0;
		for (int j = 0; j < vdim; j++)
		{
			sum += vdata[j];
		}
		if (average)
			return sum/(double)vdim;
		else
			return sum;
    }

   /** Sum of squared vector values.
     *
     * This function returns the sum of all internal values to the second
     * power_class.
     *
     * @code
     * double sum2 = m.sum2();
     * @endcode
     */
    double sum2() const
    {
        double sum = 0;
		for (int j = 0; j < vdim; j++)
		{
			sum += vdata[j] * vdata[j];
		}
		return sum;
    }

    /** Module of the vector
     *
     * This module is defined as the square root of the sum of the squared
     * components. Euclidean norm of the vector.
     *
     * @code
     * double mod = v.module();
     * @endcode
     */
    double module() const
    {
        return sqrt(sum2());
    }

    /** Angle of the vector
     *
     * Supposing this vector is in R2 this function returns the angle of this
     * vector with X axis, ie, atan2(YY(v), XX(v))
     */
    double angle()
    {
        return atan2((double) YY(*this), (double) XX(*this));
    }

    /** Normalize this vector, store the result here
     */
    void selfNormalize()
    {
        double m = module();
        if (ABS(m) > XMIPP_EQUAL_ACCURACY)
        {
            T im=(T) (1.0/m);
            *this *= im;
        }
        else
            initZeros();
    }

    /** Reverse vector values, keep in this object.
     */
    void selfReverse()
    {
    	for (int j = 0; j <= (int)(vdim - 1) / 2; j++)
    	{
    		T aux;
    		SWAP(vdata[j], vdata[vdim-1-j], aux);
    	}
    }

    /** Compute numerical derivative
     *
     * The numerical derivative is of the same size as the input vector.
     * However, the first two and the last two samples are set to 0,
     * because the numerical method is not able to correctly estimate the
     * derivative there.
     */
    void numericalDerivative(Matrix1D<double> &result)
    {
         const double i12=1.0/12.0;
         result.initZeros(*this);
         for (int i=STARTINGX(*this)+2; i<=FINISHINGX(*this)-2; i++)
        	 result(i)=i12*(-(*this)(i+2)+8*(*this)(i+1)
        			 -8*(*this)(i-1)+(*this)(i+2));
    }

    /** Output to output stream.*/
    friend std::ostream& operator<<(std::ostream& ostrm, const Matrix1D<T>& v)
    {
        if (v.vdim == 0)
            ostrm << "NULL Array\n";
        else
            ostrm << std::endl;

        double max_val = ABS(v.vdata[0]);

        for (int j = 0; j < v.vdim; j++)
        {
       	 max_val = XMIPP_MAX(max_val, v.vdata[j]);
        }

        int prec = bestPrecision(max_val, 10);

        for (int j = 0; j < v.vdim; j++)
        {
       	 ostrm << floatToString((double) v.vdata[j], 10, prec)
       	 << std::endl;
        }
        return ostrm;
    }

   //@}
};

 /**@name Vector Related functions
  * These functions are not methods of Matrix1D
  */

 /** Creates vector in R2.
  * After this function the vector is (x,y) in R2.
  *
  * @code
  * Matrix1D< double > v = vectorR2(1, 2);
  * @endcode
  */
 Matrix1D< double > vectorR2(double x, double y);

 /** Creates vector in R3.
  * After this function the vector is (x,y,z) in R3.
  *
  * @code
  * Matrix1D< double > v = vectorR2(1, 2, 1);
  * @endcode
  */
 Matrix1D< double > vectorR3(double x, double y, double z);

 /** Creates an integer vector in Z3.
  */
 Matrix1D< int > vectorR3(int x, int y, int z);

 /** Dot product.
  * Given any two vectors in Rn (n-dimensional vector), this function returns the
  * dot product of both. If the vectors are not of the same size or shape then an
  * exception is thrown. The dot product is defined as the sum of the component
  * by component multiplication.
  *
  * For the R3 vectors (V1x,V1y,V1z), (V2x, V2y, V2z) the result is V1x*V2x +
  * V1y*V2y + V1z*V2z.
  *
  * @code
  * Matrix1D< double > v1(1000);
  * v1.init_random(0, 10, "gaussian");
  * std::cout << "The power_class of this vector should be 100 and is " <<
  *     dotProduct(v1, v1) << std::endl;
  * @endcode
  */
 template<typename T>
 T dotProduct(const Matrix1D< T >& v1, const Matrix1D< T >& v2)
 {
     if (!v1.sameShape(v2))
         REPORT_ERROR("Dot product: vectors of different size or shape");

     T accumulate = 0;
     for (int j = 0; j < v1.vdim; j++)
     {
    	 accumulate += v1.vdata[j] * v2.vdata[j];
     }
     return accumulate;
 }

 /** Vector product in R3.
  * This function takes two R3 vectors and compute their vectorial product. For
  * two vectors (V1x,V1y,V1z), (V2x, V2y, V2z) the result is (V1y*V2z-V1z*v2y,
  * V1z*V2x-V1x*V2z, V1x*V2y-V1y*V2x). Pay attention that this operator is not
  * conmutative. An exception is thrown if the vectors are not of the same shape
  * or they don't belong to R3.
  *
  * @code
  * Matrix1D< T > X = vectorR3(1, 0, 0), Y = vector_R3(0, 1, 0);
  * std::cout << "X*Y=Z=" << vectorProduct(X,Y).transpose() << std::endl;
  * @endcode
  */
 template<typename T>
 Matrix1D< T > vectorProduct(const Matrix1D< T >& v1, const Matrix1D< T >& v2)
 {
     if (v1.vdim != 3 || v2.vdim != 3)
         REPORT_ERROR("Vector_product: vectors are not in R3");

     if (v1.isRow() != v2.isRow())
         REPORT_ERROR("Vector_product: vectors are of different shape");

     Matrix1D< T > result(3);
     XX(result) = YY(v1) * ZZ(v2) - ZZ(v1) * YY(v2);
     YY(result) = ZZ(v1) * XX(v2) - XX(v1) * ZZ(v2);
     ZZ(result) = XX(v1) * YY(v2) - YY(v1) * XX(v2);

     return result;
 }

 /** Vector product in R3.
  * This function computes the vector product of two R3 vectors.
  * No check is performed, it is assumed that the output vector
  * is already resized
  *
  */
 template<typename T>
 void vectorProduct(const Matrix1D< T >& v1, const Matrix1D< T >& v2,
    Matrix1D<T> &result)
 {
     XX(result) = YY(v1) * ZZ(v2) - ZZ(v1) * YY(v2);
     YY(result) = ZZ(v1) * XX(v2) - XX(v1) * ZZ(v2);
     ZZ(result) = XX(v1) * YY(v2) - YY(v1) * XX(v2);
 }

/** Sort two vectors.
  * v1 and v2 must be of the same shape, if not an exception is thrown. After
  * calling this function all components in v1 are the minimum between the
  * corresponding components in v1 and v2, and all components in v2 are the
  * maximum.
  *
  * For instance, XX(v1)=MIN(XX(v1), XX(v2)), XX(v2)=MAX(XX(v1), XX(v2)). Notice
  * that both vectors are modified. This function is very useful for sorting two
  * corners. After calling it you can certainly perform a non-empty for (from
  * corner1 to corner2) loop.
  */
 template<typename T>
 void sortTwoVectors(Matrix1D<T>& v1, Matrix1D<T>& v2)
 {
     T temp;
     if (!v1.sameShape(v2))
         REPORT_ERROR("sortTwoVectors: vectors are not of the same shape");

     for (int j = 0; j < v1.vdim; j++)
     {
    	 temp       = XMIPP_MIN(v1.vdata[j], v2.vdata[j]);
    	 v2.vdata[j] = XMIPP_MAX(v1.vdata[j], v2.vdata[j]);
    	 v1.vdata[j] = temp;
     }
 }

/** Conversion from one type to another.
  * If we have an integer array and we need a double one, we can use this
  * function. The conversion is done through a type casting of each element
  * If n >= 0, only the nth volumes will be converted, otherwise all NSIZE volumes
  */
 template<typename T1, typename T2>
 void typeCast(const Matrix1D<T1>& v1,  Matrix1D<T2>& v2)
 {
     if (v1.vdim == 0)
     {
         v2.clear();
         return;
     }

     v2.resize(v1.vdim);
     for (int j = 0; j < v1.vdim; j++)
     {
    	 v2.vdata[j] = static_cast< T2 > (v1.vdata[j]);
     }

 }
//@}
#endif /* MATRIX1D_H_ */