/usr/share/doc/libqhull-doc/qhull/qconvex.htm is in libqhull-doc 2012.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 | <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
<head>
<title>qconvex -- convex hull</title>
</head>
<body>
<!-- Navigation links -->
<a name="TOP"><b>Up</b></a><b>:</b>
<a href="http://www.qhull.org">Home page</a> for Qhull<br>
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a> -- Table of Contents<br>
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
• <a href="qh-quick.htm#options">Options</a>
• <a href="qh-opto.htm#output">Output</a>
• <a href="qh-optf.htm#format">Formats</a>
• <a href="qh-optg.htm#geomview">Geomview</a>
• <a href="qh-optp.htm#print">Print</a>
• <a href="qh-optq.htm#qhull">Qhull</a>
• <a href="qh-optc.htm#prec">Precision</a>
• <a href="qh-optt.htm#trace">Trace</a><br>
<b>To:</b> <a href="#synopsis">sy</a>nopsis
• <a href="#input">in</a>put • <a href="#outputs">ou</a>tputs
• <a href="#controls">co</a>ntrols • <a href="#graphics">gr</a>aphics
• <a href="#notes">no</a>tes • <a href="#conventions">co</a>nventions
• <a href="#options">op</a>tions
<hr>
<!-- Main text of document -->
<h1><a
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/cone.html"><img
src="qh--cone.gif" alt="[cone]" align="middle" width="100"
height="100"></a>qconvex -- convex hull</h1>
<p>The convex hull of a set of points is the smallest convex set
containing the points. See the detailed introduction by O'Rourke
[<a href="index.htm#orou94">'94</a>]. See <a
href="index.htm#description">Description of Qhull</a> and <a
href="qh-eg.htm#how">How Qhull adds a point</a>.</p>
<blockquote>
<dl>
<dt><b>Example:</b> rbox 10 D3 | qconvex <a
href="qh-opto.htm#s">s</a> <a href="qh-opto.htm#o">o</a> <a
href="qh-optt.htm#TO">TO result</a></dt>
<dd>Compute the 3-d convex hull of 10 random points. Write a
summary to the console and the points and facets to
'result'.</dd>
<dt> </dt>
<dt><b>Example:</b> rbox c | qconvex <a
href="qh-opto.htm#n">n</a></dt>
<dd>Print the normals for each facet of a cube.</dd>
<dt> </dt>
<dt><b>Example:</b> rbox c | qconvex <a
href="qh-opto.htm#i">i</a> <a href="qh-optq.htm#Qt">Qt</a></dt>
<dd>Print the triangulated facets of a cube.</dd>
<dt> </dt>
<dt><b>Example:</b> rbox y 500 W0 | qconvex</dt>
<dd>Compute the convex hull of a simplex with 500
points on its surface.</dd>
<dt> </dt>
<dt><b>Example:</b> rbox x W1e-12 1000 | qconvex
<a href="qh-optq.htm#QR">QR0</a></dt>
<dd>Compute the convex hull of 1000 points near the
surface of a randomly rotated simplex. Report
the maximum thickness of a facet.</dd>
<dt> </dt>
<dt><b>Example:</b> rbox 1000 s | qconvex <a
href="qh-opto.htm#s">s</a> <a
href="qh-optf.htm#FA">FA</a> </dt>
<dd>Compute the convex hull of 1000 cospherical
points. Verify the results and print a summary
with the total area and volume.</dd>
<dt> </dt>
<dt><b>Example:</b> rbox d D12 | qconvex <a
href="qh-optq.htm#QRn">QR0</a> <a
href="qh-optf.htm#FA">FA</a></dt>
<dd>Compute the convex hull of a 12-d diamond.
Randomly rotate the input. Note the large number
of facets and the small volume.</dd>
<dt> </dt>
<dt><b>Example:</b> rbox c D7 | qconvex <a
href="qh-optf.htm#FA">FA</a> <a
href="qh-optt.htm#TFn">TF1000</a></dt>
<dd>Compute the convex hull of the 7-d hypercube.
Report on progress every 1000 facets. Computing
the convex hull of the 9-d hypercube takes too
much time and space. </dd>
<dt> </dt>
<dt><b>Example:</b> rbox c d D2 | qconvex <a
href="qh-optq.htm#Qc">Qc</a> <a
href="qh-opto.htm#s">s</a> <a
href="qh-opto.htm#f">f</a> <a
href="qh-optf.htm#Fx">Fx</a> | more</dt>
<dd>Dump all fields of all facets for a square and a
diamond. Also print a summary and a list of
vertices. Note the coplanar points.</dd>
<dt> </dt>
</dl>
</blockquote>
<p>Except for rbox, all of the qhull programs compute a convex hull.
<p>By default, Qhull merges coplanar facets. For example, the convex
hull of a cube's vertices has six facets.
<p>If you use '<a href="qh-optq.htm#Qt">Qt</a>' (triangulated output),
all facets will be simplicial (e.g., triangles in 2-d). For the cube
example, it will have 12 facets. Some facets may be
degenerate and have zero area.
<p>If you use '<a href="qh-optq.htm#QJn">QJ</a>' (joggled input),
all facets will be simplicial. The corresponding vertices will be
slightly perturbed and identical points will be joggled apart.
Joggled input is less accurate that triangulated
output.See <a
href="qh-impre.htm#joggle">Merged facets or joggled input</a>. </p>
<p>The output for 4-d convex hulls may be confusing if the convex
hull contains non-simplicial facets (e.g., a hypercube). See
<a href=qh-faq.htm#extra>Why
are there extra points in a 4-d or higher convex hull?</a><br>
</p>
</p>
<p>The 'qconvex' program is equivalent to
'<a href=qhull.htm#outputs>qhull</a>' in 2-d to 4-d, and
'<a href=qhull.htm#outputs>qhull</a> <a href=qh-optq.htm#Qx>Qx</a>'
in 5-d and higher. It disables the following Qhull
<a href=qh-quick.htm#options>options</a>: <i>d v H Qbb Qf Qg Qm
Qr Qu Qv Qx Qz TR E V Fp Gt Q0,etc</i>.
<p><b>Copyright © 1995-2012 C.B. Barber</b></p>
<hr>
<h3><a href="#TOP">»</a><a name="synopsis">qconvex synopsis</a></h3>
<pre>
qconvex- compute the convex hull.
input (stdin): dimension, number of points, point coordinates
comments start with a non-numeric character
options (qconvex.htm):
Qt - triangulated output
QJ - joggle input instead of merging facets
Tv - verify result: structure, convexity, and point inclusion
. - concise list of all options
- - one-line description of all options
output options (subset):
s - summary of results (default)
i - vertices incident to each facet
n - normals with offsets
p - vertex coordinates (includes coplanar points if 'Qc')
Fx - extreme points (convex hull vertices)
FA - compute total area and volume
o - OFF format (dim, n, points, facets)
G - Geomview output (2-d, 3-d, and 4-d)
m - Mathematica output (2-d and 3-d)
QVn - print facets that include point n, -n if not
TO file- output results to file, may be enclosed in single quotes
examples:
rbox c D2 | qconvex s n rbox c D2 | qconvex i
rbox c D2 | qconvex o rbox 1000 s | qconvex s Tv FA
rbox c d D2 | qconvex s Qc Fx rbox y 1000 W0 | qconvex s n
rbox y 1000 W0 | qconvex s QJ rbox d G1 D12 | qconvex QR0 FA Pp
rbox c D7 | qconvex FA TF1000
</pre>
<h3><a href="#TOP">»</a><a name="input">qconvex
input</a></h3>
<blockquote>
<p>The input data on <tt>stdin</tt> consists of:</p>
<ul>
<li>dimension
<li>number of points</li>
<li>point coordinates</li>
</ul>
<p>Use I/O redirection (e.g., qconvex < data.txt), a pipe (e.g., rbox 10 | qconvex),
or the '<a href=qh-optt.htm#TI>TI</a>' option (e.g., qconvex TI data.txt).
<p>Comments start with a non-numeric character. Error reporting is
simpler if there is one point per line. Dimension
and number of points may be reversed.
<p>Here is the input for computing the convex
hull of the unit cube. The output is the normals, one
per facet.</p>
<blockquote>
<p>rbox c > data </p>
<pre>
3 RBOX c
8
-0.5 -0.5 -0.5
-0.5 -0.5 0.5
-0.5 0.5 -0.5
-0.5 0.5 0.5
0.5 -0.5 -0.5
0.5 -0.5 0.5
0.5 0.5 -0.5
0.5 0.5 0.5
</pre>
<p>qconvex s n < data</p>
<pre>
Convex hull of 8 points in 3-d:
Number of vertices: 8
Number of facets: 6
Number of non-simplicial facets: 6
Statistics for: RBOX c | QCONVEX s n
Number of points processed: 8
Number of hyperplanes created: 11
Number of distance tests for qhull: 35
Number of merged facets: 6
Number of distance tests for merging: 84
CPU seconds to compute hull (after input): 0.081
4
6
0 0 -1 -0.5
0 -1 0 -0.5
1 0 0 -0.5
-1 0 0 -0.5
0 1 0 -0.5
0 0 1 -0.5
</pre>
</blockquote>
</blockquote>
<h3><a href="#TOP">»</a><a name="outputs">qconvex outputs</a></h3>
<blockquote>
<p>These options control the output of qconvex. They may be used
individually or together.</p>
<blockquote>
<dl compact>
<dt> </dt>
<dd><b>Vertices</b></dd>
<dt><a href="qh-optf.htm#Fx">Fx</a></dt>
<dd>list extreme points (i.e., vertices). The first line is the number of
extreme points. Each point is listed, one per line. The cube example
has eight vertices.</dd>
<dt><a href="qh-optf.htm#Fv">Fv</a></dt>
<dd>list vertices for each facet. The first line is the number of facets.
Each remaining line starts with the number of vertices. For the cube example,
each facet has four vertices.</dd>
<dt><a href="qh-opto.htm#i">i</a></dt>
<dd>list vertices for each facet. The first line is the number of facets. The
remaining lines list the vertices for each facet. In 3-d and
higher, report cospherical sites by adding extra points.</dd>
<dt> </dt>
<dt> </dt>
<dd><b>Coordinates</b></dd>
<dt><a href="qh-opto.htm#o">o</a></dt>
<dd>print vertices and facets of the convex hull in OFF format. The
first line is the dimension. The second line is the number of
vertices, facets, and ridges. The vertex
coordinates are next, followed by the facets. Each facet starts with
the number of vertices. The cube example has four vertices per facet.</dd>
<dt><a href="qh-optf.htm#Ft">Ft</a></dt>
<dd>print a triangulation of the convex hull in OFF format. The first line
is the dimension. The second line is the number of vertices and added points,
followed by the number of facets and the number of ridges.
The vertex coordinates are next, followed by the centrum coordinates. There is
one centrum for each non-simplicial facet.
The cube example has six centrums, one per square.
Each facet starts with the number of vertices or centrums.
In the cube example, each facet uses two vertices and one centrum.</dd>
<dt><a href="qh-opto.htm#p">p</a></dt>
<dd>print vertex coordinates. The first line is the dimension and the second
line is the number of vertices. The following lines are the coordinates of each
vertex. The cube example has eight vertices.</dd>
<dt><a href="qh-optq.htm#Qc">Qc</a> <a href="qh-opto.htm#p">p</a></dt>
<dd>print coordinates of vertices and coplanar points. The first line is the dimension.
The second line is the number of vertices and coplanar points. The coordinates
are next, one line per point. Use '<a href="qh-optq.htm#Qc">Qc</a> <a href="qh-optq.htm#Qi">Qi</a> p'
to print the coordinates of all points.</dd>
<dt> </dt>
<dt> </dt>
<dd><b>Facets</b></dd>
<dt><a href="qh-optf.htm#Fn">Fn</a></dt>
<dd>list neighboring facets for each facet. The first line is the
number of facets. Each remaining line starts with the number of
neighboring facets. The cube example has four neighbors per facet.</dd>
<dt><a href="qh-optf.htm#FN">FN</a></dt>
<dd>list neighboring facets for each point. The first line is the
total number of points. Each remaining line starts with the number of
neighboring facets. Each vertex of the cube example has three neighboring
facets. Use '<a href="qh-optq.htm#Qc">Qc</a> <a href="qh-optq.htm#Qi">Qi</a> FN'
to include coplanar and interior points. </dd>
<dt><a href="qh-optf.htm#Fa">Fa</a></dt>
<dd>print area for each facet. The first line is the number of facets.
Facet area follows, one line per facet. For the cube example, each facet has area one.</dd>
<dt><a href="qh-optf.htm#FI">FI</a></dt>
<dd>list facet IDs. The first line is the number of
facets. The IDs follow, one per line.</dd>
<dt> </dt>
<dt> </dt>
<dd><b>Coplanar and interior points</b></dd>
<dt><a href="qh-optf.htm#Fc">Fc</a></dt>
<dd>list coplanar points for each facet. The first line is the number
of facets. The remaining lines start with the number of coplanar points.
A coplanar point is assigned to one facet.</dd>
<dt><a href="qh-optq.htm#Qi">Qi</a> <a href="qh-optf.htm#Fc">Fc</a></dt>
<dd>list interior points for each facet. The first line is the number
of facets. The remaining lines start with the number of interior points.
A coplanar point is assigned to one facet.</dd>
<dt><a href="qh-optf.htm#FP">FP</a></dt>
<dd>print distance to nearest vertex for coplanar points. The first line is the
number of coplanar points. Each remaining line starts with the point ID of
a vertex, followed by the point ID of a coplanar point, its facet, and distance.
Use '<a href="qh-optq.htm#Qc">Qc</a> <a href="qh-optq.htm#Qi">Qi</a>
<a href="qh-optf.htm#FP">FP</a>' for coplanar and interior points.</dd>
<dt> </dt>
<dt> </dt>
<dd><b>Hyperplanes</b></dd>
<dt><a href="qh-opto.htm#n">n</a></dt>
<dd>print hyperplane for each facet. The first line is the dimension. The
second line is the number of facets. Each remaining line is the hyperplane's
coefficients followed by its offset.</dd>
<dt><a href="qh-optf.htm#Fo">Fo</a></dt>
<dd>print outer plane for each facet. The output plane is above all points.
The first line is the dimension. The
second line is the number of facets. Each remaining line is the outer plane's
coefficients followed by its offset.</dd>
<dt><a href="qh-optf.htm#Fi">Fi</a></dt>
<dd>print inner plane for each facet. The inner plane of a facet is
below its vertices.
The first line is the dimension. The
second line is the number of facets. Each remaining line is the inner plane's
coefficients followed by its offset.</dd>
<dt> </dt>
<dt> </dt>
<dd><b>General</b></dd>
<dt><a href="qh-opto.htm#s">s</a></dt>
<dd>print summary for the convex hull. Use '<a
href="qh-optf.htm#Fs">Fs</a>' and '<a
href="qh-optf.htm#FS">FS</a>' if you need numeric data.</dd>
<dt><a href="qh-optf.htm#FA">FA</a></dt>
<dd>compute total area and volume for '<a
href="qh-opto.htm#s">s</a>' and '<a href="qh-optf.htm#FS">FS</a>'</dd>
<dt><a href="qh-opto.htm#m">m</a></dt>
<dd>Mathematica output for the convex hull in 2-d or 3-d.</dd>
<dt><a href="qh-optf.htm#FM">FM</a></dt>
<dd>Maple output for the convex hull in 2-d or 3-d.</dd>
<dt><a href="qh-optg.htm#G">G</a></dt>
<dd>Geomview output for the convex hull in 2-d, 3-d, or 4-d.</dd>
<dt> </dt>
<dt> </dt>
<dd><b>Scaling and rotation</b></dd>
<dt><a href="qh-optq.htm#Qbk">Qbk:n</a></dt>
<dd>scale k'th coordinate to lower bound.</dd>
<dt><a href="qh-optq.htm#QBk">QBk:n</a></dt>
<dd>scale k'th coordinate to upper bound.</dd>
<dt><a href="qh-optq.htm#QbB">QbB</a></dt>
<dd>scale input to unit cube centered at the origin.</dd>
<dt><a href="qh-optq.htm#QRn">QRn</a></dt>
<dd>randomly rotate the input with a random seed of n. If n=0, the
seed is the time. If n=-1, use time for the random seed, but do
not rotate the input.</dd>
<dt><a href="qh-optq.htm#Qb0">Qbk:0Bk:0</a></dt>
<dd>remove k'th coordinate from input. This computes the
convex hull in one lower dimension.</dd>
</dl>
</blockquote>
</blockquote>
<h3><a href="#TOP">»</a><a name="controls">qconvex controls</a></h3>
<blockquote>
<p>These options provide additional control:</p>
<blockquote>
<dl compact>
<dt><a href="qh-optq.htm#Qt">Qt</a></dt>
<dd>triangulated output. Qhull triangulates non-simplicial facets. It may produce
degenerate facets of zero area.</dd>
<dt><a href="qh-optq.htm#QJn">QJ</a></dt>
<dd>joggle the input instead of merging facets. This guarantees simplicial facets
(e.g., triangles in 3-d). It is less accurate than triangulated output ('Qt').</dd>
<dt><a href="qh-optq.htm#Qc">Qc</a></dt>
<dd>keep coplanar points</dd>
<dt><a href="qh-optq.htm#Qi">Qi</a></dt>
<dd>keep interior points</dd>
<dt><a href="qh-opto.htm#f">f </a></dt>
<dd>facet dump. Print the data structure for each facet.</dd>
<dt><a href="qh-optq.htm#QVn">QVn</a></dt>
<dd>select facets containing point <em>n</em> as a vertex,</dd>
<dt><a href="qh-optq.htm#QGn">QGn</a></dt>
<dd>select facets that are visible from point <em>n</em>
(marked 'good'). Use <em>-n</em> for the remainder.</dd>
<dt><a href="qh-optp.htm#PDk">PDk:0</a></dt>
<dd>select facets with a negative coordinate for dimension <i>k</i></dd>
<dt><a href="qh-optt.htm#TFn">TFn</a></dt>
<dd>report progress after constructing <em>n</em> facets</dd>
<dt><a href="qh-optt.htm#Tv">Tv</a></dt>
<dd>verify result</dd>
<dt><a href="qh-optt.htm#TO">TI file</a></dt>
<dd>input data from file. The filename may not use spaces or quotes.</dd>
<dt><a href="qh-optt.htm#TO">TO file</a></dt>
<dd>output results to file. Use single quotes if the filename
contains spaces (e.g., <tt>TO 'file with spaces.txt'</tt></dd>
<dt><a href="qh-optq.htm#Qs">Qs</a></dt>
<dd>search all points for the initial simplex. If Qhull can
not construct an initial simplex, it reports a
descriptive message. Usually, the point set is degenerate and one
or more dimensions should be removed ('<a href="qh-optq.htm#Qb0">Qbk:0Bk:0</a>').
If not, use option 'Qs'. It performs an exhaustive search for the
best initial simplex. This is expensive is high dimensions.</dd>
</dl>
</blockquote>
</blockquote>
<h3><a href="#TOP">»</a><a name="graphics">qconvex graphics</a></h3>
<blockquote>
<p>Display 2-d, 3-d, and 4-d convex hulls with Geomview ('<a
href="qh-optg.htm#G">G</a>').</p>
<p>Display 2-d and 3-d convex hulls with Mathematica ('<a
href="qh-opto.htm#m">m</a>').</p>
<p>To view 4-d convex hulls in 3-d, use '<a
href="qh-optp.htm#Pdk">Pd0d1d2d3</a>' to select the positive
octant and '<a href="qh-optg.htm#GDn">GrD2</a>' to drop dimension
2. </p>
</blockquote>
<h3><a href="#TOP">»</a><a name="notes">qconvex notes</a></h3>
<blockquote>
<p>Qhull always computes a convex hull. The
convex hull may be used for other geometric structures. The
general technique is to transform the structure into an
equivalent convex hull problem. For example, the Delaunay
triangulation is equivalent to the convex hull of the input sites
after lifting the points to a paraboloid.</p>
</blockquote>
<h3><a href="#TOP">»</a><a name="conventions">qconvex
conventions</a></h3>
<blockquote>
<p>The following terminology is used for convex hulls in Qhull.
See <a href="index.htm#structure">Qhull's data structures</a>.</p>
<ul>
<li><em>point</em> - <em>d</em> coordinates</li>
<li><em>vertex</em> - extreme point of the input set</li>
<li><em>ridge</em> - <i>d-1</i> vertices between two
neighboring facets</li>
<li><em>hyperplane</em> - halfspace defined by a unit normal
and offset</li>
<li><em>coplanar point</em> - a nearly incident point to a
hyperplane</li>
<li><em>centrum</em> - a point on the hyperplane for testing
convexity</li>
<li><em>facet</em> - a facet with vertices, ridges, coplanar
points, neighboring facets, and hyperplane</li>
<li><em>simplicial facet</em> - a facet with <em>d</em>
vertices, <em>d</em> ridges, and <em>d</em> neighbors</li>
<li><em>non-simplicial facet</em> - a facet with more than <em>d</em>
vertices</li>
<li><em>good facet</em> - a facet selected by '<a
href="qh-optq.htm#QVn">QVn</a>', etc.</li>
</ul>
</blockquote>
<h3><a href="#TOP">»</a><a name="options">qconvex options</a></h3>
<pre>
qconvex- compute the convex hull
http://www.qhull.org
input (stdin):
first lines: dimension and number of points (or vice-versa).
other lines: point coordinates, best if one point per line
comments: start with a non-numeric character
options:
Qt - triangulated output
QJ - joggle input instead of merging facets
Qc - keep coplanar points with nearest facet
Qi - keep interior points with nearest facet
Qhull control options:
Qbk:n - scale coord k so that low bound is n
QBk:n - scale coord k so that upper bound is n (QBk is 0.5)
QbB - scale input to unit cube centered at the origin
Qbk:0Bk:0 - remove k-th coordinate from input
QJn - randomly joggle input in range [-n,n]
QRn - random rotation (n=seed, n=0 time, n=-1 time/no rotate)
Qs - search all points for the initial simplex
QGn - good facet if visible from point n, -n for not visible
QVn - good facet if it includes point n, -n if not
Trace options:
T4 - trace at level n, 4=all, 5=mem/gauss, -1= events
Tc - check frequently during execution
Ts - print statistics
Tv - verify result: structure, convexity, and point inclusion
Tz - send all output to stdout
TFn - report summary when n or more facets created
TI file - input data from file, no spaces or single quotes
TO file - output results to file, may be enclosed in single quotes
TPn - turn on tracing when point n added to hull
TMn - turn on tracing at merge n
TWn - trace merge facets when width > n
TVn - stop qhull after adding point n, -n for before (see TCn)
TCn - stop qhull after building cone for point n (see TVn)
Precision options:
Cn - radius of centrum (roundoff added). Merge facets if non-convex
An - cosine of maximum angle. Merge facets if cosine > n or non-convex
C-0 roundoff, A-0.99/C-0.01 pre-merge, A0.99/C0.01 post-merge
Rn - randomly perturb computations by a factor of [1-n,1+n]
Un - max distance below plane for a new, coplanar point
Wn - min facet width for outside point (before roundoff)
Output formats (may be combined; if none, produces a summary to stdout):
f - facet dump
G - Geomview output (see below)
i - vertices incident to each facet
m - Mathematica output (2-d and 3-d)
n - normals with offsets
o - OFF file format (dim, points and facets; Voronoi regions)
p - point coordinates
s - summary (stderr)
More formats:
Fa - area for each facet
FA - compute total area and volume for option 's'
Fc - count plus coplanar points for each facet
use 'Qc' (default) for coplanar and 'Qi' for interior
FC - centrum for each facet
Fd - use cdd format for input (homogeneous with offset first)
FD - use cdd format for numeric output (offset first)
FF - facet dump without ridges
Fi - inner plane for each facet
FI - ID for each facet
Fm - merge count for each facet (511 max)
FM - Maple output (2-d and 3-d)
Fn - count plus neighboring facets for each facet
FN - count plus neighboring facets for each point
Fo - outer plane (or max_outside) for each facet
FO - options and precision constants
FP - nearest vertex for each coplanar point
FQ - command used for qconvex
Fs - summary: #int (8), dimension, #points, tot vertices, tot facets,
for output: #vertices, #facets,
#coplanar points, #non-simplicial facets
#real (2), max outer plane, min vertex
FS - sizes: #int (0)
#real(2) tot area, tot volume
Ft - triangulation with centrums for non-simplicial facets (OFF format)
Fv - count plus vertices for each facet
FV - average of vertices (a feasible point for 'H')
Fx - extreme points (in order for 2-d)
Geomview output (2-d, 3-d, and 4-d)
Ga - all points as dots
Gp - coplanar points and vertices as radii
Gv - vertices as spheres
Gi - inner planes only
Gn - no planes
Go - outer planes only
Gc - centrums
Gh - hyperplane intersections
Gr - ridges
GDn - drop dimension n in 3-d and 4-d output
Print options:
PAn - keep n largest facets by area
Pdk:n - drop facet if normal[k] <= n (default 0.0)
PDk:n - drop facet if normal[k] >= n
Pg - print good facets (needs 'QGn' or 'QVn')
PFn - keep facets whose area is at least n
PG - print neighbors of good facets
PMn - keep n facets with most merges
Po - force output. If error, output neighborhood of facet
Pp - do not report precision problems
. - list of all options
- - one line descriptions of all options
</pre>
<!-- Navigation links -->
<hr>
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
•<a href="qh-quick.htm#options">Options</a>
• <a href="qh-opto.htm#output">Output</a>
• <a href="qh-optf.htm#format">Formats</a>
• <a href="qh-optg.htm#geomview">Geomview</a>
• <a href="qh-optp.htm#print">Print</a>
• <a href="qh-optq.htm#qhull">Qhull</a>
• <a href="qh-optc.htm#prec">Precision</a>
• <a href="qh-optt.htm#trace">Trace</a><br>
<b>To:</b> <a href="#synopsis">sy</a>nopsis
• <a href="#input">in</a>put • <a href="#outputs">ou</a>tputs
• <a href="#controls">co</a>ntrols • <a href="#graphics">gr</a>aphics
• <a href="#notes">no</a>tes • <a href="#conventions">co</a>nventions
• <a href="#options">op</a>tions
<!-- GC common information -->
<hr>
<p><a href="http://www.geom.uiuc.edu/"><img src="qh--geom.gif"
align="middle" width="40" height="40"></a><i>The Geometry Center
Home Page </i></p>
<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
</a><br>
Created: Sept. 25, 1995 --- <!-- hhmts start --> Last modified: see top <!-- hhmts end --> </p>
</body>
</html>
|