This file is indexed.

/usr/share/perl5/Math/PlanePath/ZOrderCurve.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
# Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=ZOrderCurve,radix=3 --all --output=numbers
# math-image --path=ZOrderCurve --values=Fibbinary --text
#
# increment N+1 changes low 1111 to 10000
# X bits change 011 to 000, no carry, decreasing by number of low 1s
# Y bits change 011 to 100, plain +1
#
# cf A105186 replace odd position ternary digits with 0
#


package Math::PlanePath::ZOrderCurve;
use 5.004;
use strict;
use List::Util 'max';

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'parameter_info_array',
  'digit_split_lowtohigh',
  'digit_join_lowtohigh';
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

# uncomment this to run the ### lines
#use Smart::Comments;


use constant n_start => 0;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_visited_quad1;

use constant dx_maximum => 1;
use constant dy_maximum => 1;
use constant absdx_minimum => 1;   # X coord always changes
use constant dsumxy_maximum => 1; # forward straight only

sub dir_maximum_dxdy {
  my ($self) = @_;
  return (1, 1 - $self->{'radix'});  # SE diagonal
}

#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);

  my $radix = $self->{'radix'};
  if (! defined $radix || $radix <= 2) { $radix = 2; }
  $self->{'radix'} = $radix;

  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### ZOrderCurve n_to_xy(): $n
  if ($n < 0) {
    return;
  }
  if (is_infinite($n)) {
    return ($n,$n);
  }

  my $int = int($n);
  $n -= $int;   # fraction part

  my $radix = $self->{'radix'};
  my @ndigits = digit_split_lowtohigh ($int, $radix);
  ### @ndigits
  unless ($#ndigits & 1) {
    push @ndigits, 0;  # pad @ndigits to an even number of digits
  }

  my @xdigits;
  my @ydigits;
  while (@ndigits) {
    push @xdigits, shift @ndigits;  # low to high
    push @ydigits, shift @ndigits;  # low to high
  }
  ### @xdigits
  ### @ydigits

  my $zero = ($int * 0); # inherit bigint 0
  my $x = digit_join_lowtohigh (\@xdigits, $radix, $zero);
  my $y = digit_join_lowtohigh (\@ydigits, $radix, $zero);

  if ($n) {
    # fraction part
    my $dx = 1;
    my $dy = $zero;
    my $radix_minus_1 = $radix - 1;
    foreach my $i (0 .. $#xdigits) {  # low to high
      if ($xdigits[$i] != $radix_minus_1) {
        ### lowest non-9 is an X digit, so dx=1 dy=0,-R+1,-R^2+1,etc
        last;
      }
      $dy = ($dy * $radix) - $radix_minus_1;  # 1-$radix**$i
      if ($ydigits[$i] != $radix_minus_1) {
        ### lowest non-9 is a Y digit, so dy=1, dx=-R+1,-R^2+1,etc
        $dx = $dy;
        $dy = 1;
        last;
      }
    }
    ### $dx
    ### $dy
    $x = $n*$dx + $x;
    $y = $n*$dy + $y;
  }

  return ($x, $y);
}

sub n_to_dxdy {
  my ($self, $n) = @_;
  ### ZOrderCurve n_to_xy(): $n

  if ($n < 0) {
    return;
  }

  my $int = int($n);
  $n -= $int;   # fraction part

  if (is_infinite($int)) {
    return ($int,$int);
  }

  my $radix = $self->{'radix'};
  my $digit = _divrem_mutate($int,$radix);   # lowest digit of N
  if ($digit < $radix - 2) {
    # N an integer at lowdigit<radix-2, so dx=1,dy=0
    return (1, 0);
  }

  my $radix_minus_1 = $radix - 1;
  my $scan_for_dx = ($digit == $radix_minus_1);
  unless ($scan_for_dx) {
    ### assert: $digit == $radix-2
    unless ($n) {
      # N an integer with lowdigit==radix-2, so dx=1,dy=0
      return (1, 0);
    }
    # scan digits for next_dx,next_dy
  }

  my $power = $radix + ($int*0);  # $radix**$i, inherit bigint

  for (;;) {
    if (_divrem_mutate($int,$radix) != $radix_minus_1) {
      ### lowest non-9 is a Y digit, so dy=1, dx=-R+1,-R^2+1,etc
      if ($scan_for_dx) {
        # scanned for dx=1-power,dy=1 have nextdx=1,nextdy=0
        # frac*(nextdx-dx) + dx = n*(1-(1-power))+(1-power)
        #                       = n*(1-1+power))+1-power
        #                       = n*power+1-power
        #                       = (n-1)*power+1
        # frac*(nextdy-dy) + dy = n*(0-1) + 1
        #                       = 1-n
        return (($n-1)*$power + 1,
                1-$n);

      } else {
        # scanned for nextdx=1-power,nextdy=1 have dx=1,dy=0
        # frac*(nextdx-dx) + dx = n*((1-power)-1)+1
        #                       = n*(1-power-1)+1
        #                       = n*-power+1
        #                       = 1 - n*power
        # frac*(nextdy-dy) + dy = n*(1-0) + 0
        #                       = n
        return (1 - $n*$power,
                $n);
      }
    }

    if (_divrem_mutate($int,$radix) != $radix_minus_1) {
      ### lowest non-9 is an X digit, so dx=1 dy=0,-R+1,-R^2+1,etc
      $power -= 1;
      if ($scan_for_dx) {
        # scanned for dx=1,dy=1-power have nextdx=1,nextdy=0
        # frac*(nextdx-dx) + dx = n*(1-1)+1
        #                       = 1
        # frac*(nextdy-dy) + dy = n*(0-(1-power)) + (1-power)
        #                       = n*(-1+power) + 1-power
        #                       = -n + n*power + 1 - power
        #                       = 1-n + (n-1)*power
        #                       = (n-1)*(power-1)
        return (1,
                ($n-1) * $power);
      } else {
        # scanned for nextdx=1,nextdy=1-power have dx=1,dy=0
        # frac*(nextdx-dx) + dx = n*(1-1) + 1
        #                       = 1
        # frac*(nextdy-dy) + dy = n*((1-power) - 0) + 0
        #                       = n*(1-power)
        return (1,
                -$n*$power);
      }
    }

    $power *= $radix;
  }
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### ZOrderCurve xy_to_n(): "$x, $y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);
  if ($x < 0 || $y < 0) { return undef; }
  if (is_infinite($x)) { return $x; }
  if (is_infinite($y)) { return $y; }

  my $radix = $self->{'radix'};
  my $zero = ($x * 0 * $y); # inherit bigint 0

  my @x = digit_split_lowtohigh($x,$radix);
  my @y = digit_split_lowtohigh($y,$radix);
  return digit_join_lowtohigh ([ _digit_interleave (\@x, \@y) ],
                               $radix,
                               $zero);
}

# return list of @$xaref interleaved with @$yaref
# ($xaref->[0], $yaref->[0], $xaref->[1], $yaref->[1], ...)
#
sub _digit_interleave {
  my ($xaref, $yaref) = @_;
  my @ret;
  foreach my $i (0 .. max($#$xaref,$#$yaref)) {
    push @ret, $xaref->[$i] || 0;
    push @ret, $yaref->[$i] || 0;
  }
  return @ret;
}

# exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); }  # x1 smaller
  if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); }  # y1 smaller

  if ($y2 < 0 || $x2 < 0) {
    return (1, 0); # rect all negative, no N
  }

  if ($x1 < 0) { $x1 *= 0; }   # "*=" to preserve bigint x1 or y1
  if ($y1 < 0) { $y1 *= 0; }

  # monotonic increasing in X and Y directions, so this is exact
  return ($self->xy_to_n ($x1, $y1),
          $self->xy_to_n ($x2, $y2));
}

#------------------------------------------------------------------------------
# levels

use Math::PlanePath::ZOrderCurve;
*level_to_n_range = \&Math::PlanePath::ZOrderCurve::level_to_n_range;
*n_to_level       = \&Math::PlanePath::ZOrderCurve::n_to_level;

#------------------------------------------------------------------------------
# level_to_n_range()

# shared by Math::PlanePath::GrayCode and others
sub level_to_n_range {
  my ($self, $level) = @_;
  return (0, $self->{'radix'}**(2*$level) - 1);
}
sub n_to_level {
  my ($self, $n) = @_;
  if ($n < 0) { return undef; }
  $n = round_nearest($n);
  my ($pow, $exp) = round_down_pow ($n, $self->{'radix'} * $self->{'radix'});
  return $exp;
}

#------------------------------------------------------------------------------
1;
__END__

=for stopwords Ryde Math-PlanePath Karatsuba undrawn fibbinary eg Radix radix radix-1 RxR OEIS

=head1 NAME

Math::PlanePath::ZOrderCurve -- alternate digits to X and Y

=head1 SYNOPSIS

 use Math::PlanePath::ZOrderCurve;

 my $path = Math::PlanePath::ZOrderCurve->new;
 my ($x, $y) = $path->n_to_xy (123);

 # or another radix digits ...
 my $path3 = Math::PlanePath::ZOrderCurve->new (radix => 3);

=head1 DESCRIPTION

This path puts points in a self-similar Z pattern described by G.M. Morton,

      7  |   42  43  46  47  58  59  62  63
      6  |   40  41  44  45  56  57  60  61
      5  |   34  35  38  39  50  51  54  55
      4  |   32  33  36  37  48  49  52  53
      3  |   10  11  14  15  26  27  30  31
      2  |    8   9  12  13  24  25  28  29
      1  |    2   3   6   7  18  19  22  23
     Y=0 |    0   1   4   5  16  17  20  21  64  ...
         +---------------------------------------
            X=0   1   2   3   4   5   6   7   8

The first four points make a "Z" shape if written with Y going downwards
(inverted if drawn upwards as above),

     0---1       Y=0
        /
      /
     2---3       Y=1

Then groups of those are arranged as a further Z, etc, doubling in size each
time.

     0   1      4   5       Y=0
     2   3 ---  6   7       Y=1
             /
            /
           /
     8   9 --- 12  13       Y=2
    10  11     14  15       Y=3

Within an power of 2 square 2x2, 4x4, 8x8, 16x16 etc (2^k)x(2^k), all the N
values 0 to 2^(2*k)-1 are within the square.  The top right corner 3, 15,
63, 255 etc of each is the 2^(2*k)-1 maximum.

Along the X axis N=0,1,4,5,16,17,etc is the integers with only digits 0,1 in
base 4.  Along the Y axis N=0,2,8,10,32,etc is the integers with only digits
0,2 in base 4.  And along the X=Y diagonal N=0,3,12,15,etc is digits 0,3 in
base 4.

In the base Z pattern it can be seen that transposing to Y,X means swapping
parts 1 and 2.  This applies in the sub-parts too so in general if N is at
X,Y then changing base 4 digits 1E<lt>-E<gt>2 gives the N at the transpose
Y,X.  For example N=22 at X=6,Y=1 is base-4 "112", change 1E<lt>-E<gt>2 is
"221" for N=41 at X=1,Y=6.

=head2 Power of 2 Values

Plotting N values related to powers of 2 can come out as interesting
patterns.  For example displaying the N's which have no digit 3 in their
base 4 representation gives

    *
    * *
    *   *
    * * * *
    *       *
    * *     * *
    *   *   *   *
    * * * * * * * *
    *               *
    * *             * *
    *   *           *   *
    * * * *         * * * *
    *       *       *       *
    * *     * *     * *     * *
    *   *   *   *   *   *   *   *
    * * * * * * * * * * * * * * * *

The 0,1,2 and not 3 makes a little 2x2 "L" at the bottom left, then
repeating at 4x4 with again the whole "3" position undrawn, and so on.  This
is the Sierpinski triangle (a rotated version of
L<Math::PlanePath::SierpinskiTriangle>).  The blanks are also a visual
representation of 1-in-4 cross-products saved by recursive use of the
Karatsuba multiplication algorithm.

Plotting the fibbinary numbers (eg. L<Math::NumSeq::Fibbinary>) which are N
values with no adjacent 1 bits in binary makes an attractive tree-like
pattern,

    *
    **
    *
    ****
    *
    **
    *   *
    ********
    *
    **
    *
    ****
    *       *
    **      **
    *   *   *   *
    ****************
    *                               *
    **                              **
    *                               *
    ****                            ****
    *                               *
    **                              **
    *   *                           *   *
    ********                        ********
    *               *               *               *
    **              **              **              **
    *               *               *               *
    ****            ****            ****            ****
    *       *       *       *       *       *       *       *
    **      **      **      **      **      **      **      **
    *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *
    ****************************************************************

The horizontals arise from N=...0a0b0c for bits a,b,c so Y=...000 and
X=...abc, making those N values adjacent.  Similarly N=...a0b0c0 for a
vertical.

=head2 Radix

The C<radix> parameter can do the same N E<lt>-E<gt> X/Y digit splitting in
a higher base.  For example radix 3 makes 3x3 groupings,

     radix => 3

      5  |  33  34  35  42  43  44
      4  |  30  31  32  39  40  41
      3  |  27  28  29  36  37  38  45  ...
      2  |   6   7   8  15  16  17  24  25  26
      1  |   3   4   5  12  13  14  21  22  23
     Y=0 |   0   1   2   9  10  11  18  19  20
         +--------------------------------------
           X=0   1   2   3   4   5   6   7   8

Along the X axis N=0,1,2,9,10,11,etc is integers with only digits 0,1,2 in
base 9.  Along the Y axis digits 0,3,6, and along the X=Y diagonal digits
0,4,8.  In general for a given radix it's base R*R with the R many digits of
the first RxR block.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::ZOrderCurve-E<gt>new ()>

=item C<$path = Math::PlanePath::ZOrderCurve-E<gt>new (radix =E<gt> $r)>

Create and return a new path object.  The optional C<radix> parameter gives
the base for digit splitting (the default is binary, radix 2).

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

Fractional positions give an X,Y position along a straight line between the
integer positions.  The lines don't overlap, but the lines between bit
squares soon become rather long and probably of very limited use.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return an integer point number for coordinates C<$x,$y>.  Each integer N is
considered the centre of a unit square and an C<$x,$y> within that square
returns N.

=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>

The returned range is exact, meaning C<$n_lo> and C<$n_hi> are the smallest
and biggest in the rectangle.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, $radix**(2*$level) - 1)>.

=back

=head1 FORMULAS

=head2 N to X,Y

The coordinate calculation is simple.  The bits of X and Y are every second
bit of N.  So if N = binary 101010 then X=000 and Y=111 in binary, which is
the N=42 shown above at X=0,Y=7.

With the C<radix> parameter the digits are treated likewise, in the given
radix rather than binary.

If N includes a fraction part then it's applied to a straight line towards
point N+1.  The +1 of N+1 changes X and Y according to how many low radix-1
digits there are in N, and thus in X and Y.  In general if the lowest non
radix-1 is in X then

    dX=1
    dY = - (R^pos - 1)           # pos=0 for lowest digit

The simplest case is when the lowest digit of N is not radix-1, so dX=1,dY=0
across.

If the lowest non radix-1 is in Y then

    dX = - (R^(pos+1) - 1)       # pos=0 for lowest digit
    dY = 1

If all digits of X and Y are radix-1 then the implicit 0 above the top of X
is considered the lowest non radix-1 and so the first case applies.  In the
radix=2 above this happens for instance at N=15 binary 1111 so X = binary 11
and Y = binary 11.  The 0 above the top of X is at pos=2 so dX=1,
dY=-(2^2-1)=-3.

=head2 Rectangle to N Range

Within each row the N values increase as X increases, and within each column
N increases with increasing Y (for all C<radix> parameters).

So for a given rectangle the smallest N is at the lower left corner
(smallest X and smallest Y), and the biggest N is at the upper right
(biggest X and biggest Y).

=head1 OEIS

This path is in Sloane's Online Encyclopedia of Integer Sequences in various
forms,

=over

L<http://oeis.org/A059905> (etc)

=back

    radix=2
      A059905    X coordinate
      A059906    Y coordinate

      A000695    N on X axis       (base 4 digits 0,1 only)
      A062880    N on Y axis       (base 4 digits 0,2 only)
      A001196    N on X=Y diagonal (base 4 digits 0,3 only)

      A057300    permutation N at transpose Y,X (swap bit pairs)

    radix=3
      A163325    X coordinate
      A163326    Y coordinate
      A037314    N on X axis, base 9 digits 0,1,2
      A208665    N on X=Y diagonal, base 9 digits 0,3,6
      A163327    permutation N at transpose Y,X (swap trit pairs)

    radix=4
      A126006    permutation N at transpose Y,X (swap digit pairs)

    radix=10
      A080463    X+Y of radix=10 (from N=1 onwards)
      A080464    X*Y of radix=10 (from N=10 onwards)
      A080465    abs(X-Y), from N=10 onwards
      A051022    N on X axis (base 100 digits 0 to 9)

    radix=16
      A217558    permutation N at transpose Y,X (swap digit pairs)

And taking X,Y points in the Diagonals sequence then the value of the
following sequences is the N of the C<ZOrderCurve> at those positions.

    radix=2
      A054238    numbering by diagonals, from same axis as first step
      A054239      inverse permutation

    radix=3
      A163328    numbering by diagonals, same axis as first step
      A163329      inverse permutation
      A163330    numbering by diagonals, opp axis as first step
      A163331      inverse permutation

C<Math::PlanePath::Diagonals> numbers points from the Y axis down, which is
the opposite axis to the C<ZOrderCurve> first step along the X axis, so a
transpose is needed to give A054238.

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::PeanoCurve>,
L<Math::PlanePath::HilbertCurve>,
L<Math::PlanePath::ImaginaryBase>,
L<Math::PlanePath::CornerReplicate>,
L<Math::PlanePath::DigitGroups>

X<Arndt, Jorg>X<fxtbook>C<http://www.jjj.de/fxt/#fxtbook> (section 1.31.2)

L<Algorithm::QuadTree>, L<DBIx::SpatialKeys>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut