/usr/share/perl5/Math/PlanePath/UlamWarburton.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 | # Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
#------------------------------------------------------------------------------
# cf
# Ulam/Warburton with cells turning off too
# A079315 cells OFF -> ON
# A079317 cells ON at stage n
# A079316 cells ON at stage n, in first quadrant
# A151921 net gain ON cells
#------------------------------------------------------------------------------
package Math::PlanePath::UlamWarburton;
use 5.004;
use strict;
use Carp 'croak';
use List::Util 'sum';
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem = \&Math::PlanePath::_divrem;
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'round_down_pow',
'digit_split_lowtohigh';
use Math::PlanePath::UlamWarburtonQuarter;
# uncomment this to run the ### lines
# use Smart::Comments;
use constant parameter_info_array =>
[
{ name => 'parts',
share_key => 'parts_ulamwarburton',
display => 'Parts',
type => 'enum',
default => '4',
choices => ['4','2','1','octant','octant_up' ],
choices_display => ['4','2','1','Octant','Octant Up' ],
description => 'Which parts of the plane to fill.',
},
Math::PlanePath::Base::Generic::parameter_info_nstart1(),
];
# octant_up goes up the Y axis spine, dX=0
# all others always have dX!=0
sub absdx_minimum {
my ($self) = @_;
return ($self->{'parts'} eq 'octant_up' ? 0 : 1);
}
# used also to validate $self->{'parts'}
my %x_negative = (4 => 1,
2 => 1,
1 => 0,
octant => 0,
octant_up => 0,
);
sub x_negative {
my ($self) = @_;
return $x_negative{$self->{'parts'}};
}
sub y_negative {
my ($self) = @_;
return $self->{'parts'} eq '4';
}
sub x_negative_at_n {
my ($self) = @_;
return ($x_negative{$self->{'parts'}} ? $self->n_start + 3 : undef);
}
sub y_negative_at_n {
my ($self) = @_;
return ($self->{'parts'} eq '4' ? $self->n_start + 4 : undef);
}
sub diffxy_minimum {
my ($self) = @_;
return ($self->{'parts'} eq 'octant' ? 0 : undef);
}
sub diffxy_maximum {
my ($self) = @_;
return ($self->{'parts'} eq 'octant_up' ? 0 : undef);
}
{
my %dir_maximum_dxdy = (4 => [1,-1], # N=4 South-East
2 => [1,-1], # N=44 South-East
1 => [2,-1], # N=3 ESE
octant => [10,-3], # N=51
octant_up => [2,-1], # N=8 ESE
);
sub dir_maximum_dxdy {
my ($self) = @_;
return @{$dir_maximum_dxdy{$self->{'parts'}}};
}
}
sub tree_num_children_list {
my ($self) = @_;
return ($self->{'parts'} eq '4'
? (0, 1, 3, 4)
: (0, 1, 2, 3 ));
}
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new(@_);
if (! defined $self->{'n_start'}) {
$self->{'n_start'} = $self->default_n_start;
}
my $parts = ($self->{'parts'} ||= '4');
if (! exists $x_negative{$parts}) {
croak "Unrecognised parts option: ", $parts;
}
return $self;
}
sub n_to_xy {
my ($self, $n) = @_;
### UlamWarburton n_to_xy(): "$n parts=$self->{'parts'}"
if ($n < $self->{'n_start'}) { return; }
if (is_infinite($n)) { return ($n,$n); }
{
my $int = int($n);
### $int
### $n
if ($n != $int) {
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+1);
my $frac = $n - $int; # inherit possible BigFloat
my $dx = $x2-$x1;
my $dy = $y2-$y1;
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int; # BigFloat int() gives BigInt, use that
}
$n = $n - $self->{'n_start'}; # N=0 basis
if ($n == 0) { return (0,0); }
my $parts = $self->{'parts'};
my ($depthsum, $factor, $nrem) = _n0_to_depthsum_factor_rem($n, $parts)
or return $n; # N=nan or +inf
### depthsum: join(',',@$depthsum)
### $factor
### n rem within row: $nrem
if ($parts eq '4') {
$factor /= 4;
} elsif ($parts eq '2') {
$factor /= 2;
$nrem += ($factor-1)/2;
} elsif ($parts eq 'octant_up') {
$nrem += $factor;
} else {
$nrem += ($factor-1)/2;
}
(my $quad, $nrem) = _divrem ($nrem, $factor);
### factor modulus: $factor
### $quad
### n rem within quad: $nrem
### assert: $quad >= 0
### assert: $quad <= 3
my $dhigh = shift @$depthsum; # highest term
my @ndigits = digit_split_lowtohigh($nrem,3);
### $dhigh
### ndigits low to high: join(',',@ndigits)
my $x = 0;
my $y = 0;
foreach my $depthterm (reverse @$depthsum) { # depth terms low to high
my $ndigit = shift @ndigits; # N digits low to high
### $depthterm
### $ndigit
$x += $depthterm;
### bit to x: "$x,$y"
if ($ndigit) {
if ($ndigit == 2) {
($x,$y) = (-$y,$x); # rotate +90
}
} else {
# $ndigit==0 (or undef when @ndigits shorter than @$depthsum)
($x,$y) = ($y,-$x); # rotate -90
}
### rotate to: "$x,$y"
}
$x += $dhigh;
### xy before quad: "$x,$y"
if ($quad & 2) {
$x = -$x;
$y = -$y;
}
if ($quad & 1) {
($x,$y) = (-$y,$x); # rotate +90
}
### final: "$x,$y"
return $x,$y;
}
# no Smart::Comments;
sub xy_to_n {
my ($self, $x, $y) = @_;
### UlamWarburton xy_to_n(): "$x, $y"
$x = round_nearest ($x);
$y = round_nearest ($y);
if ($x == 0 && $y == 0) {
return $self->{'n_start'};
}
my $parts = $self->{'parts'};
if ($parts ne '4'
&& ($y < 0
|| ($parts ne '2' && $x < ($parts eq 'octant' ? $y : 0))
|| ($parts eq 'octant_up' && $x > $y))) {
return undef;
}
my $quad;
if ($y > $x) {
### quad above leading diagonal ...
# /
# above /
# /
if ($y > -$x) {
### quad above opposite diagonal, top quarter ...
# top
# \ /
# \/
$quad = 1;
($x,$y) = ($y,-$x); # rotate -90
} else {
### quad below opposite diagonal, left quarter ...
# \
# left \
# /
# /
$quad = 2;
$x = -$x; # rotate -180
$y = -$y;
}
} else {
### quad below leading diagonal ...
# /
# / below
# /
if ($y > -$x) {
### quad above opposite diagonal, right quarter ...
# /
# / right
# \
# \
$quad = 0;
} else {
### quad below opposite diagonal, bottom quarter ...
# /\
# / \
# bottom
$quad = 3;
($x,$y) = (-$y,$x); # rotate +90
}
}
### $quad
### quad rotated xy: "$x,$y"
### assert: ! ($y > $x)
### assert: ! ($y < -$x)
my ($len, $exp) = round_down_pow ($x + abs($y), 2);
if (is_infinite($exp)) { return ($exp); }
my $depth =
my $ndigits =
my $n = ($x * 0 * $y); # inherit bignum 0
while ($exp-- >= 0) {
### at: "$x,$y n=$n len=$len"
my $abs_y = abs($y);
if ($x && $x == $abs_y) {
return undef;
}
# right quarter diamond
### assert: $x >= 0
### assert: $x >= abs($y)
### assert: $x+abs($y) < 2*$len || $x==abs($y)
if ($x + $abs_y >= $len) {
# one of the three quarter diamonds away from the origin
$x -= $len;
### shift to: "$x,$y"
$depth += $len;
if ($x || $y) {
$n *= 3;
$ndigits++;
if ($y < -$x) {
### bottom, digit 0 ...
($x,$y) = (-$y,$x); # rotate +90
} elsif ($y > $x) {
### top, digit 2 ...
($x,$y) = ($y,-$x); # rotate -90
$n += 2;
} else {
### right, digit 1 ...
$n += 1;
}
}
}
$len /= 2;
}
### $n
### $depth
### $ndigits
### npower: 3**$ndigits
### $quad
### quad powered: $quad*3**$ndigits
my $npower = 3**$ndigits;
if ($parts eq 'octant_up') {
$n -= $npower;
} elsif ($parts ne '4') {
$n -= ($npower-1)/2;
}
return $n + $quad*$npower + $self->tree_depth_to_n($depth);
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### UlamWarburton rect_to_n_range(): "$x1,$y1 $x2,$y2"
my ($dlo, $dhi)
= _rect_to_diamond_range (round_nearest($x1), round_nearest($y1),
round_nearest($x2), round_nearest($y2));
### $dlo
### $dhi
if ($dlo) {
($dlo) = round_down_pow ($dlo,2);
}
($dhi) = round_down_pow ($dhi,2);
### rounded to pow2: "$dlo ".(2*$dhi)
return ($self->tree_depth_to_n($dlo),
$self->tree_depth_to_n(2*$dhi) - 1);
}
# x1 | x2
# +--------|-------+ y2 xzero true, yzero false
# | | | diamond min is y1
# +--------|-------+ y1
# |
# ----------O-------------
#
# | x1 x2
# | +--------+ y2 xzero false, yzero true
# | | | diamond min is x1
# -O--------------------
# | | |
# | +--------+ y1
# |
#
sub _rect_to_diamond_range {
my ($x1,$y1, $x2,$y2) = @_;
my $xzero = ($x1 < 0) != ($x2 < 0); # x range covers x=0
my $yzero = ($y1 < 0) != ($y2 < 0); # y range covers y=0
$x1 = abs($x1);
$y1 = abs($y1);
$x2 = abs($x2);
$y2 = abs($y2);
if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1) }
if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1) }
return (($yzero ? 0 : $y1) + ($xzero ? 0 : $x1),
$x2+$y2);
}
#------------------------------------------------------------------------------
use constant tree_num_roots => 1;
# ENHANCE-ME: step by the bits, not by X,Y
# ENHANCE-ME: tree_n_to_depth() by probe
sub tree_n_children {
my ($self, $n) = @_;
### UlamWarburton tree_n_children(): $n
if ($n < $self->{'n_start'}) {
return;
}
my ($x,$y) = $self->n_to_xy($n);
my @ret;
my $dx = 1;
my $dy = 0;
foreach (1 .. 4) {
if (defined (my $n_child = $self->xy_to_n($x+$dx,$y+$dy))) {
if ($n_child > $n) {
push @ret, $n_child;
}
}
($dx,$dy) = (-$dy,$dx); # rotate +90
}
return sort {$a<=>$b} @ret;
}
sub tree_n_parent {
my ($self, $n) = @_;
### UlamWarburton tree_n_parent(): $n
if ($n <= $self->{'n_start'}) {
return undef;
}
my ($x,$y) = $self->n_to_xy($n);
my $dx = 1;
my $dy = 0;
foreach (1 .. 4) {
if (defined (my $n_parent = $self->xy_to_n($x+$dx,$y+$dy))) {
if ($n_parent < $n) {
return $n_parent;
}
}
($dx,$dy) = (-$dy,$dx); # rotate +90
}
return undef;
}
# sub tree_n_children {
# my ($self, $n) = @_;
# my ($power, $exp) = _round_down_pow (3*$n-2, 4);
# $exp -= 1;
# $power /= 4;
#
# ### $power
# ### $exp
# ### pow base: 2 + 4*(4**$exp - 1)/3
#
# $n -= ($power - 1)/3 * 4 + 2;
# ### n less pow base: $n
#
# my @$depthsum = (2**$exp);
# $power = 3**$exp;
#
# # find the cumulative levelpoints total <= $n, being the start of the
# # level containing $n
# #
# my $factor = 4;
# while (--$exp >= 0) {
# $power /= 3;
# my $sub = 4**$exp * $factor;
# ### $sub
# # $power*$factor;
# my $rem = $n - $sub;
#
# ### $n
# ### $power
# ### $factor
# ### consider subtract: $sub
# ### $rem
#
# if ($rem >= 0) {
# $n = $rem;
# push @$depthsum, 2**$exp;
# $factor *= 3;
# }
# }
#
# $n += $factor;
# if (1) {
# return ($n,$n+1,$n+2);
# } else {
# return $n,$n+1,$n+2;
# }
# }
# Converting quarter ...
# (N-start)*4+1+start = 4*N-4*start+1+start
# = 4*N-3*start+1
#
sub tree_depth_to_n {
my ($self, $depth) = @_;
### UlamWarburton tree_depth_to_n(): $depth
if ($depth == 0) {
return $self->{'n_start'};
}
my $n = $self->Math::PlanePath::UlamWarburtonQuarter::tree_depth_to_n($depth-1);
if (! defined $n) {
return undef;
}
my $parts = $self->{'parts'};
if ($parts eq '2') {
return 2*$n - $self->{'n_start'} + $depth;
}
if ($parts eq '1') {
return $n + $depth;
}
if ($parts eq 'octant' || $parts eq 'octant_up') {
return ($n + 1);
}
### assert: $parts eq '4'
return 4*$n - 3*$self->{'n_start'} + 1;
}
# sub _NOTWORKING__tree_depth_to_n_range {
# my ($self, $depth) = @_;
# my ($nstart, $nend) = $self->Math::PlanePath::UlamWarburtonQuarter::tree_depth_to_n_range($self, $depth)
# or return;
# return (4*$nstart-3 + $self->{'n_start'}-1,
# 4*$nend-3 + $self->{'n_start'}-1);
# }
sub tree_n_to_depth {
my ($self, $n) = @_;
### UlamWarburton tree_n_to_depth(): $n
$n = $n - $self->{'n_start'}; # N=0 basis
if ($n < 0) {
return undef;
}
$n = int($n);
if ($n == 0) {
return 0;
}
my ($depthsum) = _n0_to_depthsum_factor_rem($n, $self->{'parts'})
or return $n; # N=nan or +inf
return sum(@$depthsum);
}
# 1+3+3+9=16
#
# 0 +1
# 1 +4 <- 0
# 5 +4 <- 1
# 9 +12
# 21 +4 <- 5 + 4+12 = 21 = 5 + 4*(1+3)
# 25 +12
# 37 +12
# 49 +36
# 85 +4 <- 21 + 4+12+12+36 = 21 + 4*(1+3+3+9)
# 89 +12 <- 8 +64
# 101 +12
# 113 +36
# 149
# 161
# 197
# 233
# 341
# 345 <- 16 +256
# 357
# 369
# 1+3 = 4 power 2
# 1+3+3+9 = 16 power 3
# 1+3+3+9+3+9+9+27 = 64 power 4
#
# 4*(1+4+...+4^(l-1)) = 4*(4^l-1)/3
# l=1 total=4*(4-1)/3 = 4
# l=2 total=4*(16-1)/3=4*5 = 20
# l=3 total=4*(64-1)/3=4*63/3 = 4*21 = 84
#
# n = 2 + 4*(4^l-1)/3
# (n-2) = 4*(4^l-1)/3
# 3*(n-2) = 4*(4^l-1)
# 3n-6 = 4^(l+1)-4
# 3n-2 = 4^(l+1)
#
# 3^0+3^1+3^1+3^2 = 1+3+3+9=16
# x+3x+3x+9x = 16x = 256
# 4 quads is 4*16=64
#
# 1+1+3 = 5
# 1+1+3 +1+1+3 +3+3+9 = 25
# 1+4 = 5
# 1+4+4+12 = 21 = 1 + 4*(1+1+3)
# 2 +1
# 3 +3
# 6 +1
# 7 +1
# 10 +3
# 13
# parts=1
# 1+4+...+4^(l-1) + 2^l
# = (4^l-1)/3 + 2^l
# = (4^l-1 + 3*2^l)/3
# = (2^l*(2^l + 3) - 1)/3
# l=1 total= 3
# l=2 total= 9
# l=3 total= 29
# l=4 total= 101
#
# N = (4^l-1)/3 + 2^l
# 3*(N-2^l)+1 = 4^l
# 12*(N-2^l)+1 = 4 * 4^l
#
# parts=2
# N = 2*(4^l-1)/3 + 2^l
# 3/2*(N-2^l)+1 = 4^l
# 6*(N-2^l)+1 = 4 * 4^l
#
# parts=4
# N = (4^l-1)/3
# 3*N+1 = 4 * 4^l
# use Smart::Comments;
# Return ($aref, $factor, $remaining_n).
# sum(@$aref) = depth starting depth=1
#
sub _n0_to_depthsum_factor_rem {
my ($n, $parts) = @_;
### _n0_to_depthsum_factor_rem(): "$n parts=$parts"
my $factor = ($parts eq '4' ? 4 : $parts eq '2' ? 2 : 1);
if ($n == 0) {
return ([], $factor, 0);
}
my $n3 = 3*$n + 1;
my $ndepth = 0;
my $power = $n3;
my $exp;
if ($parts eq '4') {
$power /= 4;
} elsif ($parts eq '2') {
$power /= 2;
$ndepth = -1;
} elsif ($parts =~ /octant/) {
$power *= 2;
$ndepth = 2;
}
($power, $exp) = round_down_pow ($power, 4);
### $n3
### $power
### $exp
if (is_infinite($exp)) {
return;
}
# ### pow base: ($power - 1)/3 * $factor + 1 + ($parts ne '4' && $exp)
# $n -= ($power - 1)/3 * $factor + 1;
# if ($parts ne '4') { $n -= $exp; }
# ### n less pow base: $n
my $twopow = 2**$exp;
my @depthsum;
for (;
$exp-- >= 0;
$power /= 4, $twopow /= 2) {
### at: "power=$power twopow=$twopow factor=$factor n3=$n3 ndepth=$ndepth depthsum=".join(',',@depthsum)
my $nmore = $power * $factor;
if ($parts ne '4') { $nmore += 3*$twopow; }
if ($parts =~ /octant/) {
### assert: $nmore % 2 == 0
$nmore = $nmore/2;
}
my $ncmp = $ndepth + $nmore;
### $nmore
### $ncmp
if ($n3 >= $ncmp) {
### go to ncmp, remainder: $n3-$ncmp
$factor *= 3;
$ndepth = $ncmp;
push @depthsum, $twopow;
}
}
if ($parts eq '2') {
$n3 += 1;
}
# ### assert: ($n3 - $ndepth)%3 == 0
$n = ($n3 - $ndepth) / 3;
$factor /= 3;
### $ndepth
### @depthsum
### remaining n: $n
### assert: $n >= 0
### assert: $n < $factor + ($parts ne '4')
return \@depthsum, $factor, $n;
}
sub tree_n_to_subheight {
my ($self, $n) = @_;
### tree_n_to_subheight(): $n
$n = int($n - $self->{'n_start'}); # N=0 basis
if ($n < 0) {
return undef;
}
my ($depthsum, $factor, $nrem) = _n0_to_depthsum_factor_rem($n, $self->{'parts'})
or return $n; # N=nan or +inf
### $depthsum
### $factor
### $nrem
my $parts = $self->{'parts'};
if ($parts eq '4') {
$factor /= 4;
} elsif ($parts eq '2') {
$factor /= 2;
$nrem += ($factor-1)/2;
} elsif ($parts eq 'octant_up') {
} else {
$nrem += ($factor-1)/2;
}
(my $quad, $nrem) = _divrem ($nrem, $factor);
my $sub = pop @$depthsum;
while (_divrem_mutate($nrem,3) == 1) { # low "1" ternary digits of Nrem
$sub += pop @$depthsum;
}
if (@$depthsum) {
return $depthsum->[-1] - 1 - $sub;
} else {
return undef; # N all 1-digits, on central infinite spine
}
}
#------------------------------------------------------------------------------
# levels
sub level_to_n_range {
my ($self, $level) = @_;
return ($self->{'n_start'},
$self->tree_depth_to_n_end(2**($level+1)-1));
}
sub n_to_level {
my ($self, $n) = @_;
my $depth = $self->tree_n_to_depth($n);
if (! defined $depth) { return undef; }
my ($pow, $exp) = round_down_pow ($depth, 2);
return $exp + 1;
}
# parts=4
# Ndepth(2^a) = 2 + 4*(4^a-1)/3
# Nend(2^a-1) = 1 + 4*(4^a-1)/3 = (4^(a+1)-1)/3
# parts=2
#
# {
# my %factor = (4 => 16,
# 2 => 8,
# 1 => 4,
# octant => 2,
# octant_up => 2,
# );
# my %constant = (4 => -4,
# 2 => -5,
# 1 => -4,
# octant => 0,
# octant_up => 0,
# );
# my %spine = (4 => 0,
# 2 => 2,
# 1 => 2,
# octant => 1,
# octant_up => 1,
# );
# sub level_to_n_range {
# my ($self, $level) = @_;
# my $parts = $self->{'parts'};
# return ($self->{'n_start'},
# $self->{'n_start'}
# + (4**$level * $factor{$parts} + $constant{$parts}) / 3
# + 2**$level * $spine{$parts});
# }
# }
#------------------------------------------------------------------------------
1;
__END__
=for stopwords eg Ryde Math-PlanePath Ulam Warburton Ndepth OEIS ie
=head1 NAME
Math::PlanePath::UlamWarburton -- growth of a 2-D cellular automaton
=head1 SYNOPSIS
use Math::PlanePath::UlamWarburton;
my $path = Math::PlanePath::UlamWarburton->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
X<Ulam, Stanislaw>X<Warburton>This is the pattern of a cellular automaton
studied by Ulam and Warburton, numbering cells by growth tree row and
anti-clockwise within the rows.
=cut
# math-image --path=UlamWarburton --expression='i<100?i:0' --output=numbers
# and add N=100,N=101 manually
=pod
94 9
95 87 93 8
63 7
64 42 62 6
65 30 61 5
66 43 31 23 29 41 60 4
69 67 14 59 57 3
70 44 68 15 7 13 58 40 56 2
96 71 32 16 3 12 28 55 92 1
97 88 72 45 33 24 17 8 4 1 2 6 11 22 27 39 54 86 91 <- Y=0
98 73 34 18 5 10 26 53 90 -1
74 46 76 19 9 21 50 38 52 ... -2
75 77 20 85 51 -3
78 47 35 25 37 49 84 -4
79 36 83 -5
80 48 82 -6
81 -7
99 89 101 -8
100 -9
^
-9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6 7 8 9
The growth rule is that a given cell grows up, down, left and right, but
only if the new cell has no neighbours (up, down, left or right). So the
initial cell "a" is N=1,
a initial depth=0 cell
The next row "b" cells are numbered N=2 to N=5 anti-clockwise from the
right,
b
b a b depth=1
b
Likewise the next row "c" cells N=6 to N=9. The "b" cells only grow
outwards as 4 "c"s since the other positions would have neighbours in the
existing "b"s.
c
b
c b a b c depth=2
b
c
The "d" cells are then N=10 to N=21, numbered following the previous row "c"
cell order and then anti-clockwise around each.
d
d c d
d b d
d c b a b c d depth=3
d b d
d c d
d
There's only 4 "e" cells since among the "d"s only the X,Y axes won't have
existing neighbours (the "b"s and "d"s).
e
d
d c d
d b d
e d c b a b c d e depth=4
d b d
d c d
d
e
In general the pattern always grows by 1 outward along the X and Y axes and
travels into the quarter planes between with a diamond shaped tree pattern
which fills 11 of 16 cells in each 4x4 square block.
=head2 Tree Row Ranges
Counting depth=0 as the N=1 at the origin and depth=1 as the next N=2,3,4,5
generation, the number of cells in a row is
rowwidth(0) = 1
then
rowwidth(depth) = 4 * 3^((count_1_bits(depth) - 1)
So depth=1 has 4*3^0=4 cells, as does depth=2 at N=6,7,8,9. Then depth=3
has 4*3^1=12 cells N=10 to N=21 because depth=3=0b11 has two 1-bits in
binary. The N start and end for a row is the cumulative total of those
before it,
Ndepth(depth) = 1 + (rowwidth(0) + ... + rowwidth(depth-1))
Nend(depth) = rowwidth(0) + ... + rowwidth(depth)
For example depth 3 ends at N=(1+4+4)=9.
depth Ndepth rowwidth Nend
0 1 1 1
1 2 4 5
2 6 4 9
3 10 12 21
4 22 4 25
5 26 12 37
6 38 12 49
7 50 36 85
8 86 4 89
9 90 12 101
For a power-of-2 depth the Ndepth is
Ndepth(2^a) = 2 + 4*(4^a-1)/3
For example depth=4=2^2 starts at N=2+4*(4^2-1)/3=22, or depth=8=2^3 starts
N=2+4*(4^3-1)/3=86.
Further bits in the depth value contribute powers-of-4 with a tripling for
each bit above. So if the depth number has bits a,b,c,d,etc in descending
order,
depth = 2^a + 2^b + 2^c + 2^d ... a>b>c>d...
Ndepth = 2 + 4*(-1
+ 4^a
+ 3 * 4^b
+ 3^2 * 4^c
+ 3^3 * 4^d + ... ) / 3
For example depth=6 = 2^2+2^1 is Ndepth = 2 + (1+4*(4^2-1)/3) + 4^(1+1) =
38. Or depth=7 = 2^2+2^1+2^0 is Ndepth = 1 + (1+4*(4^2-1)/3) + 4^(1+1) +
3*4^(0+1) = 50.
=head2 Self-Similar Replication
The diamond shape depth=1 to depth=2^level-1 repeats three times. For
example an "a" part going to the right of the origin "O",
d
d d d
| a d c
--O a a a * c c c ...
| a b c
b b b
b
The 2x2 diamond shaped "a" repeats pointing up, down and right as "b", "c"
and "d". This resulting 4x4 diamond then likewise repeats up, down and
right. The same happens in the other quarters of the plane.
The points in the path here are numbered by tree rows rather than in this
sort of replication, but the replication helps to see the structure of the
pattern.
=head2 Half Plane
Option C<parts =E<gt> '2'> confines the pattern to the upper half plane
C<YE<gt>=0>,
=cut
# math-image --path=UlamWarburton,parts=2 --expression='i<32?i:0' --output=numbers --size=99x16
=pod
parts => "2"
28 6
21 5
29 22 16 20 27 4
11 3
30 12 6 10 26 2
23 13 3 9 19 1
31 24 17 14 7 4 1 2 5 8 15 18 25 <- Y=0
--------------------------------------
-6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6
Points are still numbered anti-clockwise around so X axis N=1,2,5,8,15,etc
is the first of row depth=X. X negative axis N=1,4,7,14,etc is the last of
row depth=-X. For depth=0 point N=1 is both the first and last of that row.
Within a row a line from point N to N+1 is always a 45-degree angle. This
is true of each 3 direct children, but also across groups of children by
symmetry. For this parts=2 the lines from the last of one row to the first
of the next are horizontal, making an attractive pattern of diagonals and
then across to the next row horizontally. For parts=4 or parts=1 the last
to first lines are at various different slopes and so upsets the pattern.
=head2 One Quadrant
Option C<parts =E<gt> '1'> confines the pattern to the first quadrant,
=cut
# math-image --path=UlamWarburton,parts=1 --expression='i<=73?i:0' --output=numbers --size=99x16
=pod
parts => "1" to depth=14
14 | 73
13 | 63
12 | 53 62 72
11 | 49
10 | 39 48 71
9 | 35 47 61
8 | 31 34 38 46 52 60 70
7 | 29 45 59
6 | 19 28 69 67
5 | 15 27 57
4 | 11 14 18 26 68 58 51 56 66
3 | 9 25 23 43
2 | 5 8 24 17 22 44 37 42 65
1 | 3 7 13 21 33 41 55
Y=0 | 1 2 4 6 10 12 16 20 30 32 36 40 50 54 64
+-----------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
X axis N=1,2,4,6,10,etc is the first of each row X=depth. Y axis
N=1,3,5,9,11,etc is the last similarly Y=depth.
In this arrangement horizontal arms have even N and vertical arms have
odd N. For example the vertical at X=8 N=30,33,37,etc has N odd from N=33
up and when it turns to horizontal at N=42 or N=56 it switches to N even.
The children of N=66 are not shown but the verticals from there are N=79
below and N=81 above and so switch to odd again.
This odd/even pattern is true of N=2 horizontal and N=3 vertical and
thereafter is true due to each row having an even number of points and the
self-similar replications in the pattern,
|\ replication
| \ block 0 to 1 and 3
|3 \ and block 0 block 2 less sides
|----
|\ 2|\
| \ | \
|0 \|1 \
---------
Block 0 is the base and is replicated as block 1 and in reverse as block 3.
Block 2 is a further copy of block 0, but the two halves of block 0 rotated
inward 90 degrees, so the X axis of block 0 becomes the vertical of block 2,
and the Y axis of block 0 the horizontal of block 2. Those axis parts are
dropped since they're already covered by block 1 and 3 and dropping them
flips the odd/even parity to match the vertical/horizontal flip due to the
90-degree rotation.
=head2 Octant
Option C<parts =E<gt> 'octant'> confines the pattern to the first eighth of
the plane 0E<lt>=YE<lt>=X.
=cut
# math-image --path=UlamWarburton,parts=octant --expression='i<=51?i:0' --output=numbers --size=75x15
=pod
parts => "octant"
7 | 47 ...
6 | 48 36 46
5 | 49 31 45
4 | 50 37 32 27 30 35 44
3 | 14 51 24 43 41
2 | 15 10 13 25 20 23 42 34 40
1 | 5 8 12 18 22 29 39
Y=0 | 1 2 3 4 6 7 9 11 16 17 19 21 26 28 33 38
+-------------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
In this arrangement N=1,2,3,4,6,7,etc on the X axis is the first N of each
row (C<tree_depth_to_n()>).
=head2 Upper Octant
Option C<parts =E<gt> 'octant_up'> confines the pattern to the upper octant
0E<lt>=XE<lt>=Y of the first quadrant.
=cut
# math-image --path=UlamWarburton,parts=octant_up --expression='i<=51?i:0' --output=numbers --size=75x15
=pod
parts => "octant_up"
8 | 16 17 19 22 26 29 34 42
7 | 15 21 28 41
6 | 10 14 38 33 40
5 | 8 13 39
4 | 6 7 9 12
3 | 5 11
2 | 3 4
1 | 2
Y=0 | 1
+--------------------------
X=0 1 2 3 4 5 6 7
In this arrangement N=1,2,3,5,6,8,etc on the Y axis the last N of each row
(C<tree_depth_to_n_end()>).
=head2 N Start
The default is to number points starting N=1 as shown above. An optional
C<n_start> can give a different start, in the same pattern. For example to
start at 0,
=cut
# math-image --path=UlamWarburton,n_start=0 --expression='i<38?i:0' --output=numbers
=pod
n_start => 0
29 5
30 22 28 4
13 3
14 6 12 2
31 15 2 11 27 1
32 23 16 7 3 0 1 5 10 21 26 <- Y=0
33 17 4 9 25 -1
18 8 20 37 -2
19 -3
34 24 36 -4
35 -5
^
-5 -4 -3 -2 -1 X=0 1 2 3 4 5
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::UlamWarburton-E<gt>new ()>
=item C<$path = Math::PlanePath::UlamWarburton-E<gt>new (parts =E<gt> $str, n_start =E<gt> $n)>
Create and return a new path object. The C<parts> option (a string) can be
"4" the default
"2"
"1"
=back
=head2 Tree Methods
=over
=item C<@n_children = $path-E<gt>tree_n_children($n)>
Return the children of C<$n>, or an empty list if C<$n> has no children
(including when C<$n E<lt> 1>, ie. before the start of the path).
The children are the cells turned on adjacent to C<$n> at the next row. The
way points are numbered means that when there's multiple children they're
consecutive N values, for example at N=6 the children are 10,11,12.
=back
=head2 Tree Descriptive Methods
=over
=item C<@nums = $path-E<gt>tree_num_children_list()>
Return a list of the possible number of children in C<$path>. This is the
set of possible return values from C<tree_n_num_children()>. The possible
children varies with the C<parts>,
parts tree_num_children_list()
----- ------------------------
4 0, 1, 3, 4 (the default)
2 0, 1, 2, 3
1 0, 1, 2, 3
parts=4 has 4 children at the origin N=0 and thereafter either 0, 1 or 3.
parts=2 and parts=1 can have 2 children on the boundaries where the 3rd
child is chopped off, otherwise 0, 1 or 3.
=item C<$n_parent = $path-E<gt>tree_n_parent($n)>
Return the parent node of C<$n>, or C<undef> if C<$n E<lt>= 1> (the start of
the path).
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<$n_lo = $n_start> and
parts $n_hi
----- -----
4 $n_start + (16*4**$level - 4) / 3
2 $n_start + ( 8*4**$level - 5) / 3 + 2*2**$level
1 $n_start + ( 4*4**$level - 4) / 3 + 2*2**$level
C<$n_hi> is C<tree_depth_to_n_end(2**($level+1) - 1>.
=back
=head1 OEIS
This cellular automaton is in Sloane's Online Encyclopedia of Integer
Sequences as
=over
L<http://oeis.org/A147582> (etc)
=back
parts=4
A147562 total cells to depth, being tree_depth_to_n() n_start=0
A147582 added cells at depth
parts=2
A183060 total cells to depth=n in half plane
A183061 added cells at depth=n
parts=1
A151922 total cells to depth=n in quadrant
A079314 added cells at depth=n
The A147582 new cells sequence starts from n=1, so takes the innermost N=1
single cell as row n=1, then N=2,3,4,5 as row n=2 with 5 cells, etc. This
makes the formula a binary 1-bits count on n-1 rather than on N the way
rowwidth() above is expressed.
The 1-bits-count power 3^(count_1_bits(depth)) part of the rowwidth() is
also separately in A048883, and as n-1 in A147610.
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::UlamWarburtonQuarter>,
L<Math::PlanePath::LCornerTree>,
L<Math::PlanePath::CellularRule>
L<Math::PlanePath::SierpinskiTriangle> (a similar binary 1s-count related
calculation)
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|