This file is indexed.

/usr/share/perl5/Math/PlanePath/TriangularHypot.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image  --path=TriangularHypot

# A034017 - loeschian primatives xx+xy+yy, primes 3k+1 and a factor of 3
#           which is when x^2-x+1 mod n has a solution
#
# A092572 - all x^2+3*y^2
# A158937 - all x^2+3*y^2 with repetitions x>0,y>0
#
# A092572 - 6n+1 primes
# A055664 - norms of Eisenstein-Jacobi primes
# A008458 - hex coordination sequence, 1 and multiples of 6
#
# A2 centred at lattice point:
# A014201 - x*x+x*y+y*y solutions excluding 0,0
# A038589 - lattice sizes, =A014201+1
# A038590 - sizes, uniques of A038589
# A038591 - 3fold symmetry, union A038588 and A038590
#
# A2 centred at hole
# A038587 - centred deep hole
# A038588 - centred deep hole uniques of A038587
# A005882 - theta relative hole
#           3,3,6,0,6,3,6,0,3,6,6,0,6,0,6,0,9,6,0,0,6,3,6,0,6,6,6,0,0,0,12,
# A033685 - theta series of hexagonal lattice A_2 with respect to deep hole.
#           1/3 steps of norm, so extra zeros
#           0,3,0,0,3,0,0,6,0,0,0,0,0,6,0,0,3,0,0,6,0,0,0,0,0,3,0,0,6,0,0,6,
#
# A005929 Theta series of hexagonal net with respect to mid-point of edge.

#                          [27] [28] [31]
#                          [12] [13] [16] [21] [28]
#                 [7]  [4]  [3]  [4]  [7] [12] [19] [28]
# [25] [16]  [9]  [4]  [1]  [0]  [1]  [4]  [9] [16] [25] [36]
#                 [7]  [4]  [3]  [4]  [7]
#                          [12]
#                          [27]

# mirror across +60
#   (X,Y) = ((X+3Y)/2, (Y-X)/2);   # rotate -60
#   Y = -Y;  # mirror
#   (X,Y) = ((X-3Y)/2, (X+Y)/2);    # rotate +60
#
#   (X,Y) = ((X+3Y)/2, (Y-X)/2);   # rotate -60
#   (X,Y) = ((X+3Y)/2, (X-Y)/2);
#
#   (X,Y) = (((X+3Y)/2+3(Y-X)/2)/2, ((X+3Y)/2-(Y-X)/2)/2);
#         = (((X+3Y)+3(Y-X))/4, ((X+3Y)-(Y-X))/4);
#         = ((X + 3Y + 3Y - 3X)/4, (X + 3Y - Y + X)/4);
#         = ((-2X + 6Y)/4, (2X + 2Y)/4);
#         = ((-X + 3Y)/2, (X+Y)/2);
# # eg X=6,Y=0 -> X=-6/2=-3 Y=(6+0)/2=3


package Math::PlanePath::TriangularHypot;
use 5.004;
use strict;
use Carp 'croak';

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';

# uncomment this to run the ### lines
# use Smart::Comments;


use constant parameter_info_array =>
  [ { name            => 'points',
      share_type      => 'points_eoahrc',
      display         => 'Points',
      type            => 'enum',
      default         => 'even',
      choices         => ['even','odd', 'all',
                          'hex','hex_rotated','hex_centred',
                         ],
      choices_display => ['Even','Odd', 'All',
                          'Hex','Hex Rotated','Hex Centred',
                         ],
      description     => 'Which X,Y points visit, either X+Y even or odd, or all points, or hexagonal grid points.',
    },
    Math::PlanePath::Base::Generic::parameter_info_nstart1(),
  ];

{
  my %x_negative_at_n = (even => 3,
                         odd  => 1,
                         all  => 2,
                         hex         => 2,
                         hex_rotated => 2,
                         hex_centred => 2,
                        );
  sub x_negative_at_n {
    my ($self) = @_;
    return $self->n_start + $x_negative_at_n{$self->{'points'}};
  }
}
{
  my %y_negative_at_n = (even => 5,
                                        odd  => 3,
                                        all  => 4,
                                        hex         => 3,
                                        hex_rotated => 3,
                                        hex_centred => 4,
                                       );
  sub y_negative_at_n {
    my ($self) = @_;
    return $self->n_start + $y_negative_at_n{$self->{'points'}};
  }
}
sub rsquared_minimum {
  my ($self) = @_;
  return ($self->{'points'} eq 'odd'           ? 1   # at X=1,Y=0
          : $self->{'points'} eq 'hex_centred' ? 2   # at X=1,Y=1
          : 0);   # even,all,hex,hex_rotated at X=0,Y=0
}
*sumabsxy_minimum = \&rsquared_minimum;

sub absdiffxy_minimum {
  my ($self) = @_;
  return ($self->{'points'} eq 'odd'
          ? 1     # odd, line X=Y not included
          : 0);   # even,all includes X=Y
}

#------------------------------------------------------------------------------

sub new {
  ### TriangularHypot new() ...
  my $self = shift->SUPER::new(@_);

  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }

  my $points = ($self->{'points'} ||= 'even');
  if ($points eq 'all') {
    $self->{'n_to_x'} = [0];
    $self->{'n_to_y'} = [0];
    $self->{'hypot_to_n'} = [0];  # N=0 at X=0,Y=0
    $self->{'y_next_x'} = [1-1];
    $self->{'y_next_hypot'} = [3*0**2 + 1**2];
    $self->{'x_inc'} = 1;
    $self->{'x_inc_factor'} = 2;  # ((x+1)^2 - x^2) = 2*x+1
    $self->{'x_inc_squared'} = 1;
    $self->{'symmetry'} = 4;

  } elsif ($points eq 'even') {
    $self->{'n_to_x'} = [0];
    $self->{'n_to_y'} = [0];
    $self->{'hypot_to_n'} = [0];  # N=0 at X=0,Y=0
    $self->{'y_next_x'} = [2-2];
    $self->{'y_next_hypot'} = [3*0**2 + 2**2];
    $self->{'x_inc'} = 2;
    $self->{'x_inc_factor'} = 4;  # ((x+2)^2 - x^2) = 4*x+4
    $self->{'x_inc_squared'} = 4;
    $self->{'skip_parity'} = 1;
    $self->{'symmetry'} = 12;

  } elsif ($points eq 'odd') {
    $self->{'n_to_x'} = [];
    $self->{'n_to_y'} = [];
    $self->{'hypot_to_n'} = [];
    $self->{'y_next_x'} = [1-2];
    $self->{'y_next_hypot'} = [1];
    $self->{'x_inc'} = 2;
    $self->{'x_inc_factor'} = 4;
    $self->{'x_inc_squared'} = 4;
    $self->{'skip_parity'} = 0;
    $self->{'symmetry'} = 4;

  } elsif ($points eq 'hex') {
    $self->{'n_to_x'} = [0];  # N=0 at X=0,Y=0
    $self->{'n_to_y'} = [0];
    $self->{'hypot_to_n'} = [0];  # N=0 at X=0,Y=0
    $self->{'y_next_x'} = [2-2];
    $self->{'y_next_hypot'} = [2**2 + 3*0**2]; # next at X=2,Y=0
    $self->{'x_inc'} = 2;
    $self->{'x_inc_factor'} = 4;  # ((x+2)^2 - x^2) = 4*x+4
    $self->{'x_inc_squared'} = 4;
    $self->{'skip_parity'} = 1;  # should be even
    $self->{'skip_hex'} = 4;     # x+3y==0,2 only
    $self->{'symmetry'} = 6;

  } elsif ($points eq 'hex_rotated') {
    $self->{'n_to_x'} = [0];  # N=0 at X=0,Y=0
    $self->{'n_to_y'} = [0];
    $self->{'hypot_to_n'} = [0];  # N=0 at X=0,Y=0
    $self->{'y_next_x'} = [4-2,
                           1-2];
    $self->{'y_next_hypot'} = [4**2 + 3*0**2, # next at X=4,Y=0
                               1**2 + 3*1**2]; # next at X=1,Y=1
    $self->{'x_inc'} = 2;
    $self->{'x_inc_factor'} = 4;  # ((x+2)^2 - x^2) = 4*x+4
    $self->{'x_inc_squared'} = 4;
    $self->{'skip_parity'} = 1;  # should be even
    $self->{'skip_hex'} = 2;     # x+3y==0,4 only
    $self->{'symmetry'} = 6;

  } elsif ($points eq 'hex_centred') {
    $self->{'n_to_x'} = [];
    $self->{'n_to_y'} = [];
    $self->{'hypot_to_n'} = [];
    $self->{'y_next_x'} = [2-2];  # for first at X=2
    $self->{'y_next_hypot'} = [2**2 + 3*0**2]; # at X=2,Y=0
    $self->{'x_inc'} = 2;
    $self->{'x_inc_factor'} = 4;  # ((x+2)^2 - x^2) = 4*x+4
    $self->{'x_inc_squared'} = 4;
    $self->{'skip_parity'} = 1;  # should be even
    $self->{'skip_hex'} = 0;     # x+3y==2,4 only
    $self->{'symmetry'} = 12;

  } else {
    croak "Unrecognised points option: ", $points;
  }

  ### $self
  ### assert: $self->{'y_next_hypot'}->[0] == (3 * 0**2 + ($self->{'y_next_x'}->[0]+$self->{'x_inc'})**2)

  return $self;
}

sub _extend {
  my ($self) = @_;
  ### _extend() ...

  my $n_to_x       = $self->{'n_to_x'};
  my $n_to_y       = $self->{'n_to_y'};
  my $hypot_to_n   = $self->{'hypot_to_n'};
  my $y_next_x     = $self->{'y_next_x'};
  my $y_next_hypot = $self->{'y_next_hypot'};

  ### $y_next_x
  ### $y_next_hypot

  # set @y to the Y with the smallest $y_next_hypot->[$y], and if there's some
  # Y's with equal smallest hypot then all those Y's in ascending order
  my @y = (0);
  my $hypot = $y_next_hypot->[0];
  for (my $i = 1; $i < @$y_next_x; $i++) {
    if ($hypot == $y_next_hypot->[$i]) {
      push @y, $i;
    } elsif ($hypot > $y_next_hypot->[$i]) {
      @y = ($i);
      $hypot = $y_next_hypot->[$i];
    }
  }

  ### chosen y list: @y

  # if the endmost of the @$y_next_x, @y_next_hypot arrays are used then
  # extend them by one
  if ($y[-1] == $#$y_next_x) {
    my $y = scalar(@$y_next_x);  # new Y value

    ### highest y: $y[-1]
    ### so grow y: $y

    my $points = $self->{'points'};
    if ($points eq 'even') {
      # h = (3 * $y**2 + $x**2)
      #   = (3 * $y**2 + ($3*y)**2)
      #   = (3*$y*$y + 9*$y*$y)
      #   = (12*$y*$y)
      $y_next_x->[$y] = 3*$y - $self->{'x_inc'};      # X=3*Y, so X-2=3*Y-2
      $y_next_hypot->[$y] = 12*$y*$y;

    } elsif ($points eq 'odd') {
      my $odd = ! ($y%2);
      $y_next_x->[$y] = $odd - $self->{'x_inc'};
      $y_next_hypot->[$y] = 3*$y*$y + $odd;

    } elsif ($points eq 'hex') {
      my $x = $y_next_x->[$y] = (($y % 3) == 1 ? $y : $y-2);
      $x += 2;
      $y_next_hypot->[$y] = $x*$x + 3*$y*$y;
      ### assert: (($x+$y*3) % 6 == 0 || ($x+$y*3) % 6 == 2)

    } elsif ($points eq 'hex_rotated') {
      my $x = $y_next_x->[$y] = (($y % 3) == 2 ? $y : $y-2);
      $x += 2;
      $y_next_hypot->[$y] = $x*$x + 3*$y*$y;
      ### assert: (($x+$y*3) % 6 == 4 || ($x+$y*3) % 6 == 0)

    } elsif ($points eq 'hex_centred') {
      my $x = $y_next_x->[$y] = 3*$y;
      $x += 2;
      $y_next_hypot->[$y] = $x*$x + 3*$y*$y;
      ### assert: (($x+$y*3) % 6 == 2 || ($x+$y*3) % 6 == 4)

    } else {
      ### assert: $points eq 'all'
      $y_next_x->[$y] = - $self->{'x_inc'};      # X=0, so X-1=0
      $y_next_hypot->[$y] = 3*$y*$y;
    }

    ### new y_next_x (with adjustment): $y_next_x->[$y]+$self->{'x_inc'}
    ### new y_next_hypot: $y_next_hypot->[$y]

    ### assert: ($points ne 'even' || (($y ^ ($y_next_x->[$y]+$self->{'x_inc'})) & 1) == 0)
    ### assert: $y_next_hypot->[$y] == (3 * $y**2 + ($y_next_x->[$y]+$self->{'x_inc'})**2)
  }

  # @x is the $y_next_x->[$y] for each of the @y smallests, and step those
  # selected elements next X and hypot for that new X,Y
  my @x = map {
    ### assert: (3 * $_**2 + ($y_next_x->[$_]+$self->{'x_inc'})**2) == $y_next_hypot->[$_]

    my $x = ($y_next_x->[$_] += $self->{'x_inc'});
    ### map y _: $_
    ### map inc x to: $x
    if (defined $self->{'skip_hex'}
         && ($x+2 + 3*$_) % 6 == $self->{'skip_hex'}) {
      ### extra inc for hex ...
      $y_next_x->[$_] += 2;
      $y_next_hypot->[$_] += 8*$x+16;   # (X+4)^2-X^2 = 8X+16
    } else {
      $y_next_hypot->[$_]
        += $self->{'x_inc_factor'}*$x + $self->{'x_inc_squared'};
    }

    ### $x
    ### y_next_x (including adjust): $y_next_x->[$_]+$self->{'x_inc'}
    ### y_next_hypot[]: $y_next_hypot->[$_]

    ### assert: $y_next_hypot->[$_] == (3 * $_**2 + ($y_next_x->[$_]+$self->{'x_inc'})**2)
    ### assert: $self->{'points'} ne 'hex' || (($x+3*$_) % 6 == 0 || ($x+3*$_) % 6 == 2)
    ### assert: $self->{'points'} ne 'hex_rotated' || (($x+$_*3) % 6 == 4 || ($x+$_*3) % 6 == 0)
    ### assert: $self->{'points'} ne 'hex_centred' || (($x+$_*3) % 6 == 2 || ($x+$_*3) % 6 == 4)

    $x
  } @y;
  ### $hypot

  my $p2;
  if ($self->{'symmetry'} == 12) {
    ### base twelvth: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)
    my $p1 = scalar(@y);
    my @base_x = @x;
    my @base_y = @y;
    unless ($y[0]) { # no mirror of x,0
      shift @base_x;
      shift @base_y;
    }
    if ($x[-1] == 3*$y[-1]) { # no mirror of x=3*y line
      pop @base_x;
      pop @base_y;
    }
    $#x = $#y = ($p1+scalar(@base_x))*6-1;  # pre-extend arrays
    for (my $i = $#base_x; $i >= 0; $i--) {
      $x[$p1]   = ($base_x[$i] + 3*$base_y[$i]) / 2;
      $y[$p1++] = ($base_x[$i] - $base_y[$i]) / 2;
    }
    ### with mirror 30: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p1-1)

    $p2 = 2*$p1;
    foreach my $i (0 .. $p1-1) {
      $x[$p1]   = ($x[$i] - 3*$y[$i])/2;   # rotate +60
      $y[$p1++] = ($x[$i] + $y[$i])/2;

      $x[$p2]   = ($x[$i] + 3*$y[$i])/-2;  # rotate +120
      $y[$p2++] = ($x[$i] - $y[$i])/2;
    }
    ### with rotates 60,120: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p2-1)

    foreach my $i (0 .. $p2-1) {
      $x[$p2]   = -$x[$i];        # rotate 180
      $y[$p2++] = -$y[$i];
    }
    ### with rotate 180: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)

  } elsif ($self->{'symmetry'} == 6) {
    my $p1 = scalar(@x);
    my @base_x = @x;
    my @base_y = @y;
    unless ($y[0]) { # no mirror of x,0
      shift @base_x;
      shift @base_y;
    }
    if ($x[-1] == $y[-1]) { # no mirror of X=Y line
      pop @base_x;
      pop @base_y;
    }
    ### base xy: join(' ',map{"$base_x[$_],$base_y[$_]"} 0 .. $#base_x)

    for (my $i = $#base_x; $i >= 0; $i--) {
      $x[$p1]   = ($base_x[$i] - 3*$base_y[$i]) / -2;   # mirror +60
      $y[$p1++] = ($base_x[$i] + $base_y[$i]) / 2;
    }
    ### with mirror 60: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p1-1)

    $p2 = 2*$p1;
    foreach my $i (0 .. $#x) {
      $x[$p1]   = ($x[$i] + 3*$y[$i])/-2;  # rotate +120
      $y[$p1++] = ($x[$i] - $y[$i])/2;

      $x[$p2]   = ($x[$i] - 3*$y[$i])/-2;  # rotate +240 == -120
      $y[$p2++] = ($x[$i] + $y[$i])/-2;

      # should be on correct grid
      # ### assert: (($x[$p1-1]+$y[$p1-1]*3) % 6 == 0 || ($x[$p1-1]+$y[$p1-1]*3) % 6 == 2)
      # ### assert: (($x[$p2-1]+$y[$p2-1]*3) % 6 == 0 || ($x[$p2-1]+$y[$p2-1]*3) % 6 == 2)
    }
    ### with rotates 120,240: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p2-1)

  } else {
    ### assert: $self->{'symmetry'} == 4
    ### base quarter: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)
    my $p1 = $#x;
    push @y, reverse @y;
    push @x, map {-$_} reverse @x;
    if ($x[$p1] == 0) {
      splice @x, $p1, 1;  # don't duplicate X=0 in mirror
      splice @y, $p1, 1;
    }
    if ($y[-1] == 0) {
      pop @y;  # omit final Y=0 ready for rotate
      pop @x;
    }
    $p2 = scalar(@y);
    ### with mirror +90: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p2-1)

    foreach my $i (0 .. $p2-1) {
      $x[$p2]   = -$x[$i];        # rotate 180
      $y[$p2++] = -$y[$i];
    }
    ### with rotate 180: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)
  }

  ### store: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)
  ### at n: scalar(@$n_to_x)
  ### hypot_to_n: "h=$hypot n=".scalar(@$n_to_x)
  $hypot_to_n->[$hypot] = scalar(@$n_to_x);
  push @$n_to_x, @x;
  push @$n_to_y, @y;

  # ### hypot_to_n now: join(' ',map {defined($hypot_to_n->[$_]) && "h=$_,n=$hypot_to_n->[$_]"} 0 .. $#hypot_to_n)
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### TriangularHypot n_to_xy(): $n

  $n = $n - $self->{'n_start'};  # starting $n==0, warn if $n==undef
  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  my $int = int($n);
  $n -= $int;  # fraction part

  my $n_to_x = $self->{'n_to_x'};
  my $n_to_y = $self->{'n_to_y'};

  while ($int >= $#$n_to_x) {
    _extend($self);
  }

  my $x = $n_to_x->[$int];
  my $y = $n_to_y->[$int];
  return ($x + $n * ($n_to_x->[$int+1] - $x),
          $y + $n * ($n_to_y->[$int+1] - $y));
}

sub xy_is_visited {
  my ($self, $x, $y) = @_;

  if (defined $self->{'skip_parity'}) {
    $x = round_nearest ($x);
    $y = round_nearest ($y);
    if ((($x%2) ^ ($y%2)) == $self->{'skip_parity'}) {
      ### XY wrong parity, no point ...
      return 0;
    }
  }
  if (defined $self->{'skip_hex'}) {
    $x = round_nearest ($x);
    $y = round_nearest ($y);
    if ((($x%6) + 3*($y%6)) % 6 == $self->{'skip_hex'}) {
      ### XY wrong hex, no point ...
      return 0;
    }
  }
  return 1;
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### TriangularHypot xy_to_n(): "$x, $y    points=$self->{'points'}"

  $x = round_nearest ($x);
  $y = round_nearest ($y);

  ### parity xor: ($x%2) ^ ($y%2)
  ### hex modulo: (($x%6) + 3*($y%6)) % 6
  if (defined $self->{'skip_parity'}
      && (($x%2) ^ ($y%2)) == $self->{'skip_parity'}) {
    ### XY wrong parity, no point ...
    return undef;
  }
  if (defined $self->{'skip_hex'}
      && (($x%6) + 3*($y%6)) % 6 == $self->{'skip_hex'}) {
    ### XY wrong hex, no point ...
    return undef;
  }


  my $hypot = 3*$y*$y + $x*$x;
  if (is_infinite($hypot)) {
    # avoid infinite loop extending @hypot_to_n
    return undef;
  }
  ### $hypot

  my $hypot_to_n = $self->{'hypot_to_n'};
  my $n_to_x     = $self->{'n_to_x'};
  my $n_to_y     = $self->{'n_to_y'};

  while ($hypot > $#$hypot_to_n) {
    _extend($self);
  }
  my $n = $hypot_to_n->[$hypot];
  for (;;) {
    if ($x == $n_to_x->[$n] && $y == $n_to_y->[$n]) {
      return $n + $self->{'n_start'};
    }
    $n += 1;

    if ($n_to_x->[$n]**2 + 3*$n_to_y->[$n]**2 != $hypot) {
      ### oops, hypot_to_n no good ...
      return undef;
    }
  }
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;

  $x1 = abs (round_nearest ($x1));
  $y1 = abs (round_nearest ($y1));
  $x2 = abs (round_nearest ($x2));
  $y2 = abs (round_nearest ($y2));

  if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); }
  if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); }

  # xyradius r^2 = 1/4 * $x2**2 + 3/4 * $y2**2
  # (r+1/2)^2 = r^2 + r + 1/4
  # circlearea = pi*(r+1/2)^2
  # each hexagon area outradius 1/2 is hexarea = sqrt(27/64)

  my $r2 = $x2*$x2 + 3*$y2*$y2;
  my $n = (3.15 / sqrt(27/64) / 4) * ($r2 + sqrt($r2))
    * (3 - $self->{'x_inc'});  # *2 for odd or even, *1 for all
  return ($self->{'n_start'},
          $self->{'n_start'} + int($n));
}

1;
__END__

=for stopwords Ryde Math-PlanePath hypot ie OEIS

=head1 NAME

Math::PlanePath::TriangularHypot -- points of triangular lattice in order of hypotenuse distance

=head1 SYNOPSIS

 use Math::PlanePath::TriangularHypot;
 my $path = Math::PlanePath::TriangularHypot->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path visits X,Y points on a triangular "A2" lattice in order of their
distance from the origin 0,0 and anti-clockwise around from the X axis among
those of equal distance.

=cut

# math-image --all --output=numbers --path=TriangularHypot

=pod

             58    47    39    46    57                 4

          48    34    23    22    33    45              3

       40    24    16     9    15    21    38           2

    49    25    10     4     3     8    20    44        1

       35    17     5     1     2    14    32      <- Y=0

    50    26    11     6     7    13    31    55       -1

       41    27    18    12    19    30    43          -2

          51    36    28    29    37    54             -3

             60    52    42    53    61                -4

                          ^
    -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7

The lattice is put on a square X,Y grid using every second point per
L<Math::PlanePath/Triangular Lattice>.  Scaling X/2,Y*sqrt(3)/2 gives
equilateral triangles of side length 1 making a distance from X,Y to the
origin

    dist^2 = (X/2^2 + (Y*sqrt(3)/2)^2
           = (X^2 + 3*Y^2) / 4

For example N=19 at X=2,Y=-2 is sqrt((2**2+3*-2**2)/4) = sqrt(4) from the
origin.  The next smallest after that is X=5,Y=1 at sqrt(7).  The key part
is X^2 + 3*Y^2 as the distance measure to order the points.

=head2 Equal Distances

Points with the same distance are taken in anti-clockwise order around from
the X axis.  For example N=14 at X=4,Y=0 is sqrt(4) from the origin, and so
are the rotated X=2,Y=2 and X=-2,Y=2 etc in other sixth segments, for a
total 6 points N=14 to N=19 all the same distance.

Symmetry means there's a set of 6 or 12 points with the same distance, so
the count of same-distance points is always a multiple of 6 or 12.  There
are 6 symmetric points when on the six radial lines X=0, X=Y or X=-Y, and on
the lines Y=0, X=3*Y or X=-3*Y which are midway between them.  There's 12
symmetric points for anything else, ie. anything in the twelve slices
between those twelve lines.  The first set of 12 equal is N=20 to N=31 all
at sqrt(28).

There can also be further ways for the same distance to arise, as multiple
solutions to X^2+3*Y^3=d^2, but the 6-way or 12-way symmetry means there's
always a multiple of 6 or 12 in total.

=head2 Odd Points

Option C<points =E<gt> "odd"> visits just the odd points, meaning sum X+Y
odd, which is X,Y one odd the other even.

=cut

# math-image --path=TriangularHypot,points=odd --output=numbers --expression='i<=70?i:0'

=pod

    points => "odd"
                         69                              5
          66    50    45    44    49    65               4
       58    40    28    25    27    39    57            3
    54    32    20    12    11    19    31    53         2
       36    16     6     3     5    15    35            1
    46    24    10     2     1     9    23    43    <- Y=0
       37    17     7     4     8    18    38           -1
    55    33    21    13    14    22    34    56        -2
       59    41    29    26    30    42    60           -3
          67    51    47    48    52    68              -4
                         70                             -5

                          ^
       -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6

=head2 All Points

Option C<points =E<gt> "all"> visits all integer X,Y points.

=cut

# math-image --path=TriangularHypot,points=all --output=numbers --expression='i<=71?i:0'

=pod

    points => "all"

                64 59 49 44 48 58 63                  3
          69 50 39 30 25 19 24 29 38 47 68            2
          51 35 20 13  8  4  7 12 18 34 46            1
       65 43 31 17  9  3  1  2  6 16 28 42 62    <- Y=0
          52 36 21 14 10  5 11 15 23 37 57           -1
          70 53 40 32 26 22 27 33 41 56 71           -2
                66 60 54 45 55 61 67                 -3

                          ^
       -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6

=head2 Hex Points

Option C<points =E<gt> "hex"> visits X,Y points making a hexagonal grid,

=cut

# math-image --path=TriangularHypot,points=hex --output=numbers --expression='i<=61?i:0' --size=150x20

=pod

    points => "hex"

                         50----42          49----59                    5
                        /        \        /        \
                51----39          27----33          48                 4
               /        \        /        \        /
             43          22----15          21----32                    3
               \        /        \        /        \
                28----16           6----11          26----41           2
               /        \        /        \        /        \
       52----34           7---- 3           5----14          47        1
      /        \        /        \        /        \        /
    60          23----12           1-----2          20----38      <- Y=0
      \        /        \        /        \        /        \
       53----35           8---- 4          10----19          58       -1
               \        /        \        /        \        /
                29----17           9----13          31----46          -2
               /        \        /        \        /
             44          24----18          25----37                   -3
               \        /        \        /        \
                54----40          30----36          57                -4
                        \        /        \        /
                         55----45          56----61                   -5

                                   ^
       -9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7  8  9

N=1 is at the origin X=0,Y=0, then N=2,3,4 are all at X^2+3Y^2=4 away from
the origin, etc.  The joining lines drawn above show the grid pattern but
points are in order of distance from the origin.

The points are all integer X,Y with X+3Y mod 6 == 0 or 2.  This is a subset
of the default "even" points in that X+Y is even but with 1 of each 3 points
skipped to make the hexagonal outline.

=head2 Hex Rotated Points

Option C<points =E<gt> "hex_rotated"> is the same hexagonal points but
rotated around so N=2 is at +60 degrees instead of on the X axis.

=cut

# math-image --path=TriangularHypot,points=hex_rotated --output=numbers --expression='i<=61?i:0' --size=150x20

=pod

    points => "hex_rotated"


                60----50          42----49                             5
               /        \        /        \
             51          33----27          38----48                    4
               \        /        \        /        \
                34----22          15----21          41                 3
               /        \        /        \        /
       43----28          12-----6          14----26                    2
      /        \        /        \        /        \
    52          16-----7           2-----5          32----47           1
      \        /        \        /        \        /        \
       39----23           3-----1          11----20          59   <- Y=0
      /        \        /        \        /        \        /
    53          17-----8           4----10          37----58          -1
      \        /        \        /        \        /
       44----29          13-----9          19----31                   -2
               \        /        \        /        \
                35----24          18----25          46                -3
               /        \        /        \        /
             54          36----30          40----57                   -4
               \        /        \        /
                61----55          45----56                            -5


                                ^
    -9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7  8  9

Points are still numbered from the X axis clockwise.  The sets of points at
equal hypotenuse distances are the same as plain "hex" but the numbering is
changed by the rotation.

The points visited are all integer X,Y with X+3Y mod 6 == 0 or 4.  This grid
can be viewed either as a +60 degree or a +180 degree rotation of the plain
hex.

=head2 Hex Centred Points

Option C<points =E<gt> "hex_centred"> is the same hexagonal grid as hex
above, but with the origin X=0,Y=0 in the centre of a hexagon,

=cut

# math-image --path=TriangularHypot,points=hex_centred --output=numbers --expression='i<=61?i:0' --size=150x20

=pod

    points => "hex_centred"

                         46----45                              5
                        /        \
                39----28          27----38                     4
               /        \        /        \
       47----29          16----15          26----44            3
      /        \        /        \        /        \
    48          17-----9           8----14          43         2
      \        /        \        /        \        /
       30----18           3-----2          13----25            1
      /        \        /        \        /        \
    40          10-----4     .     1-----7          37    <- Y=0
      \        /        \        /        \        /
       31----19           5-----6          24----36           -1
      /        \        /        \        /        \
    49          20----11          12----23          54        -2
      \        /        \        /        \        /
       50----32          21----22          35----53           -3
               \        /        \        /
                41----33          34----42                    -4
                        \        /
                         51----52                             -5

                             ^
    -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7  8  9

N=1,2,3,4,5,6 are all at X^2+3Y^2=4 away from the origin, then
N=7,8,9,10,11,12, etc.  The points visited are all integer X,Y with X+3Y mod
6 == 2 or 4.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::TriangularHypot-E<gt>new ()>

=item C<$path = Math::PlanePath::TriangularHypot-E<gt>new (points =E<gt> $str)>

Create and return a new hypot path object.  The C<points> option can be

    "even"          only points with X+Y even (the default)
    "odd"           only points with X+Y odd
    "all"           all integer X,Y
    "hex"           hexagonal X+3Y==0,2 mod 6
    "hex_rotated"   hexagonal X+3Y==0,4 mod 6
    "hex_centred"   hexagonal X+3Y==2,4 mod 6

Create and return a new triangular hypot path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.

For C<$n E<lt> 1> the return is an empty list as the first point at X=0,Y=0
is N=1.

Currently it's unspecified what happens if C<$n> is not an integer.
Successive points are a fair way apart, so it may not make much sense to say
give an X,Y position in between the integer C<$n>.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return an integer point number for coordinates C<$x,$y>.  Each integer N is
considered the centre of a unit square and an C<$x,$y> within that square
returns N.

For "even" and "odd" options only every second square in the plane has an N
and if C<$x,$y> is a position not covered then the return is C<undef>.

=back

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path include,

=over

L<http://oeis.org/A003136> (etc)

=back

    points="even" (the default)
      A003136  norms (X^2+3*Y^2)/4 which occur
      A004016  count of points of norm==n
      A035019    skipping zero counts
      A088534    counting only in the twelfth 0<=X<=Y

The counts in these sequences are expressed as norm = x^2+x*y+y^2.  That x,y
is related to the "even" X,Y on the path here by a -45 degree rotation,

    x = (Y-X)/2           X = 2*(x+y)
    y = (X+Y)/2           Y = 2*(y-x)

    norm = x^2+x*y+y^2
         = ((Y-X)/2)^2 + (Y-X)/2 * (X+Y)/2 + ((X+Y)/2)^2
         = (X^2 + 3*Y^2) / 4

The X^2+3*Y^2 is the dist^2 described above for equilateral triangles of
unit side.  The factor of /4 scales the distance but of course doesn't
change the sets of points of the same distance.

    points="all"
      A092572  norms X^2+3*Y^2 which occur
      A158937  norms X^2+3*Y^2 which occur, X>0,Y>0 with repeats
      A092573  count of points norm==n for X>0,Y>0

      A092574  norms X^2+3*Y^2 which occur for X>0,Y>0, gcd(X,Y)=1
      A092575  count of points norm==n for X>0,Y>0, gcd(X,Y)=1
                 ie. X,Y no common factor

=cut

# ((Y-X)/2)^2 + (Y-X)/2 * (X+Y)/2 + ((X+Y)/2)^2
#  = YY-2XY+XX + YY-XX + XX+2XY+YY   / 4
#  = 3YY + XX

=pod

    points="hex"
      A113062  count of points norm=X^2+3*Y^2=4*n (theta series)
      A113063   divided by 3

    points="hex_centred"
      A217219  count of points norm=X^2+3*Y^2=4*n (theta series)

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::Hypot>,
L<Math::PlanePath::HypotOctant>,
L<Math::PlanePath::PixelRings>,
L<Math::PlanePath::HexSpiral>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut