/usr/share/perl5/Math/PlanePath/TriangularHypot.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 | # Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# math-image --path=TriangularHypot
# A034017 - loeschian primatives xx+xy+yy, primes 3k+1 and a factor of 3
# which is when x^2-x+1 mod n has a solution
#
# A092572 - all x^2+3*y^2
# A158937 - all x^2+3*y^2 with repetitions x>0,y>0
#
# A092572 - 6n+1 primes
# A055664 - norms of Eisenstein-Jacobi primes
# A008458 - hex coordination sequence, 1 and multiples of 6
#
# A2 centred at lattice point:
# A014201 - x*x+x*y+y*y solutions excluding 0,0
# A038589 - lattice sizes, =A014201+1
# A038590 - sizes, uniques of A038589
# A038591 - 3fold symmetry, union A038588 and A038590
#
# A2 centred at hole
# A038587 - centred deep hole
# A038588 - centred deep hole uniques of A038587
# A005882 - theta relative hole
# 3,3,6,0,6,3,6,0,3,6,6,0,6,0,6,0,9,6,0,0,6,3,6,0,6,6,6,0,0,0,12,
# A033685 - theta series of hexagonal lattice A_2 with respect to deep hole.
# 1/3 steps of norm, so extra zeros
# 0,3,0,0,3,0,0,6,0,0,0,0,0,6,0,0,3,0,0,6,0,0,0,0,0,3,0,0,6,0,0,6,
#
# A005929 Theta series of hexagonal net with respect to mid-point of edge.
# [27] [28] [31]
# [12] [13] [16] [21] [28]
# [7] [4] [3] [4] [7] [12] [19] [28]
# [25] [16] [9] [4] [1] [0] [1] [4] [9] [16] [25] [36]
# [7] [4] [3] [4] [7]
# [12]
# [27]
# mirror across +60
# (X,Y) = ((X+3Y)/2, (Y-X)/2); # rotate -60
# Y = -Y; # mirror
# (X,Y) = ((X-3Y)/2, (X+Y)/2); # rotate +60
#
# (X,Y) = ((X+3Y)/2, (Y-X)/2); # rotate -60
# (X,Y) = ((X+3Y)/2, (X-Y)/2);
#
# (X,Y) = (((X+3Y)/2+3(Y-X)/2)/2, ((X+3Y)/2-(Y-X)/2)/2);
# = (((X+3Y)+3(Y-X))/4, ((X+3Y)-(Y-X))/4);
# = ((X + 3Y + 3Y - 3X)/4, (X + 3Y - Y + X)/4);
# = ((-2X + 6Y)/4, (2X + 2Y)/4);
# = ((-X + 3Y)/2, (X+Y)/2);
# # eg X=6,Y=0 -> X=-6/2=-3 Y=(6+0)/2=3
package Math::PlanePath::TriangularHypot;
use 5.004;
use strict;
use Carp 'croak';
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
# uncomment this to run the ### lines
# use Smart::Comments;
use constant parameter_info_array =>
[ { name => 'points',
share_type => 'points_eoahrc',
display => 'Points',
type => 'enum',
default => 'even',
choices => ['even','odd', 'all',
'hex','hex_rotated','hex_centred',
],
choices_display => ['Even','Odd', 'All',
'Hex','Hex Rotated','Hex Centred',
],
description => 'Which X,Y points visit, either X+Y even or odd, or all points, or hexagonal grid points.',
},
Math::PlanePath::Base::Generic::parameter_info_nstart1(),
];
{
my %x_negative_at_n = (even => 3,
odd => 1,
all => 2,
hex => 2,
hex_rotated => 2,
hex_centred => 2,
);
sub x_negative_at_n {
my ($self) = @_;
return $self->n_start + $x_negative_at_n{$self->{'points'}};
}
}
{
my %y_negative_at_n = (even => 5,
odd => 3,
all => 4,
hex => 3,
hex_rotated => 3,
hex_centred => 4,
);
sub y_negative_at_n {
my ($self) = @_;
return $self->n_start + $y_negative_at_n{$self->{'points'}};
}
}
sub rsquared_minimum {
my ($self) = @_;
return ($self->{'points'} eq 'odd' ? 1 # at X=1,Y=0
: $self->{'points'} eq 'hex_centred' ? 2 # at X=1,Y=1
: 0); # even,all,hex,hex_rotated at X=0,Y=0
}
*sumabsxy_minimum = \&rsquared_minimum;
sub absdiffxy_minimum {
my ($self) = @_;
return ($self->{'points'} eq 'odd'
? 1 # odd, line X=Y not included
: 0); # even,all includes X=Y
}
#------------------------------------------------------------------------------
sub new {
### TriangularHypot new() ...
my $self = shift->SUPER::new(@_);
if (! defined $self->{'n_start'}) {
$self->{'n_start'} = $self->default_n_start;
}
my $points = ($self->{'points'} ||= 'even');
if ($points eq 'all') {
$self->{'n_to_x'} = [0];
$self->{'n_to_y'} = [0];
$self->{'hypot_to_n'} = [0]; # N=0 at X=0,Y=0
$self->{'y_next_x'} = [1-1];
$self->{'y_next_hypot'} = [3*0**2 + 1**2];
$self->{'x_inc'} = 1;
$self->{'x_inc_factor'} = 2; # ((x+1)^2 - x^2) = 2*x+1
$self->{'x_inc_squared'} = 1;
$self->{'symmetry'} = 4;
} elsif ($points eq 'even') {
$self->{'n_to_x'} = [0];
$self->{'n_to_y'} = [0];
$self->{'hypot_to_n'} = [0]; # N=0 at X=0,Y=0
$self->{'y_next_x'} = [2-2];
$self->{'y_next_hypot'} = [3*0**2 + 2**2];
$self->{'x_inc'} = 2;
$self->{'x_inc_factor'} = 4; # ((x+2)^2 - x^2) = 4*x+4
$self->{'x_inc_squared'} = 4;
$self->{'skip_parity'} = 1;
$self->{'symmetry'} = 12;
} elsif ($points eq 'odd') {
$self->{'n_to_x'} = [];
$self->{'n_to_y'} = [];
$self->{'hypot_to_n'} = [];
$self->{'y_next_x'} = [1-2];
$self->{'y_next_hypot'} = [1];
$self->{'x_inc'} = 2;
$self->{'x_inc_factor'} = 4;
$self->{'x_inc_squared'} = 4;
$self->{'skip_parity'} = 0;
$self->{'symmetry'} = 4;
} elsif ($points eq 'hex') {
$self->{'n_to_x'} = [0]; # N=0 at X=0,Y=0
$self->{'n_to_y'} = [0];
$self->{'hypot_to_n'} = [0]; # N=0 at X=0,Y=0
$self->{'y_next_x'} = [2-2];
$self->{'y_next_hypot'} = [2**2 + 3*0**2]; # next at X=2,Y=0
$self->{'x_inc'} = 2;
$self->{'x_inc_factor'} = 4; # ((x+2)^2 - x^2) = 4*x+4
$self->{'x_inc_squared'} = 4;
$self->{'skip_parity'} = 1; # should be even
$self->{'skip_hex'} = 4; # x+3y==0,2 only
$self->{'symmetry'} = 6;
} elsif ($points eq 'hex_rotated') {
$self->{'n_to_x'} = [0]; # N=0 at X=0,Y=0
$self->{'n_to_y'} = [0];
$self->{'hypot_to_n'} = [0]; # N=0 at X=0,Y=0
$self->{'y_next_x'} = [4-2,
1-2];
$self->{'y_next_hypot'} = [4**2 + 3*0**2, # next at X=4,Y=0
1**2 + 3*1**2]; # next at X=1,Y=1
$self->{'x_inc'} = 2;
$self->{'x_inc_factor'} = 4; # ((x+2)^2 - x^2) = 4*x+4
$self->{'x_inc_squared'} = 4;
$self->{'skip_parity'} = 1; # should be even
$self->{'skip_hex'} = 2; # x+3y==0,4 only
$self->{'symmetry'} = 6;
} elsif ($points eq 'hex_centred') {
$self->{'n_to_x'} = [];
$self->{'n_to_y'} = [];
$self->{'hypot_to_n'} = [];
$self->{'y_next_x'} = [2-2]; # for first at X=2
$self->{'y_next_hypot'} = [2**2 + 3*0**2]; # at X=2,Y=0
$self->{'x_inc'} = 2;
$self->{'x_inc_factor'} = 4; # ((x+2)^2 - x^2) = 4*x+4
$self->{'x_inc_squared'} = 4;
$self->{'skip_parity'} = 1; # should be even
$self->{'skip_hex'} = 0; # x+3y==2,4 only
$self->{'symmetry'} = 12;
} else {
croak "Unrecognised points option: ", $points;
}
### $self
### assert: $self->{'y_next_hypot'}->[0] == (3 * 0**2 + ($self->{'y_next_x'}->[0]+$self->{'x_inc'})**2)
return $self;
}
sub _extend {
my ($self) = @_;
### _extend() ...
my $n_to_x = $self->{'n_to_x'};
my $n_to_y = $self->{'n_to_y'};
my $hypot_to_n = $self->{'hypot_to_n'};
my $y_next_x = $self->{'y_next_x'};
my $y_next_hypot = $self->{'y_next_hypot'};
### $y_next_x
### $y_next_hypot
# set @y to the Y with the smallest $y_next_hypot->[$y], and if there's some
# Y's with equal smallest hypot then all those Y's in ascending order
my @y = (0);
my $hypot = $y_next_hypot->[0];
for (my $i = 1; $i < @$y_next_x; $i++) {
if ($hypot == $y_next_hypot->[$i]) {
push @y, $i;
} elsif ($hypot > $y_next_hypot->[$i]) {
@y = ($i);
$hypot = $y_next_hypot->[$i];
}
}
### chosen y list: @y
# if the endmost of the @$y_next_x, @y_next_hypot arrays are used then
# extend them by one
if ($y[-1] == $#$y_next_x) {
my $y = scalar(@$y_next_x); # new Y value
### highest y: $y[-1]
### so grow y: $y
my $points = $self->{'points'};
if ($points eq 'even') {
# h = (3 * $y**2 + $x**2)
# = (3 * $y**2 + ($3*y)**2)
# = (3*$y*$y + 9*$y*$y)
# = (12*$y*$y)
$y_next_x->[$y] = 3*$y - $self->{'x_inc'}; # X=3*Y, so X-2=3*Y-2
$y_next_hypot->[$y] = 12*$y*$y;
} elsif ($points eq 'odd') {
my $odd = ! ($y%2);
$y_next_x->[$y] = $odd - $self->{'x_inc'};
$y_next_hypot->[$y] = 3*$y*$y + $odd;
} elsif ($points eq 'hex') {
my $x = $y_next_x->[$y] = (($y % 3) == 1 ? $y : $y-2);
$x += 2;
$y_next_hypot->[$y] = $x*$x + 3*$y*$y;
### assert: (($x+$y*3) % 6 == 0 || ($x+$y*3) % 6 == 2)
} elsif ($points eq 'hex_rotated') {
my $x = $y_next_x->[$y] = (($y % 3) == 2 ? $y : $y-2);
$x += 2;
$y_next_hypot->[$y] = $x*$x + 3*$y*$y;
### assert: (($x+$y*3) % 6 == 4 || ($x+$y*3) % 6 == 0)
} elsif ($points eq 'hex_centred') {
my $x = $y_next_x->[$y] = 3*$y;
$x += 2;
$y_next_hypot->[$y] = $x*$x + 3*$y*$y;
### assert: (($x+$y*3) % 6 == 2 || ($x+$y*3) % 6 == 4)
} else {
### assert: $points eq 'all'
$y_next_x->[$y] = - $self->{'x_inc'}; # X=0, so X-1=0
$y_next_hypot->[$y] = 3*$y*$y;
}
### new y_next_x (with adjustment): $y_next_x->[$y]+$self->{'x_inc'}
### new y_next_hypot: $y_next_hypot->[$y]
### assert: ($points ne 'even' || (($y ^ ($y_next_x->[$y]+$self->{'x_inc'})) & 1) == 0)
### assert: $y_next_hypot->[$y] == (3 * $y**2 + ($y_next_x->[$y]+$self->{'x_inc'})**2)
}
# @x is the $y_next_x->[$y] for each of the @y smallests, and step those
# selected elements next X and hypot for that new X,Y
my @x = map {
### assert: (3 * $_**2 + ($y_next_x->[$_]+$self->{'x_inc'})**2) == $y_next_hypot->[$_]
my $x = ($y_next_x->[$_] += $self->{'x_inc'});
### map y _: $_
### map inc x to: $x
if (defined $self->{'skip_hex'}
&& ($x+2 + 3*$_) % 6 == $self->{'skip_hex'}) {
### extra inc for hex ...
$y_next_x->[$_] += 2;
$y_next_hypot->[$_] += 8*$x+16; # (X+4)^2-X^2 = 8X+16
} else {
$y_next_hypot->[$_]
+= $self->{'x_inc_factor'}*$x + $self->{'x_inc_squared'};
}
### $x
### y_next_x (including adjust): $y_next_x->[$_]+$self->{'x_inc'}
### y_next_hypot[]: $y_next_hypot->[$_]
### assert: $y_next_hypot->[$_] == (3 * $_**2 + ($y_next_x->[$_]+$self->{'x_inc'})**2)
### assert: $self->{'points'} ne 'hex' || (($x+3*$_) % 6 == 0 || ($x+3*$_) % 6 == 2)
### assert: $self->{'points'} ne 'hex_rotated' || (($x+$_*3) % 6 == 4 || ($x+$_*3) % 6 == 0)
### assert: $self->{'points'} ne 'hex_centred' || (($x+$_*3) % 6 == 2 || ($x+$_*3) % 6 == 4)
$x
} @y;
### $hypot
my $p2;
if ($self->{'symmetry'} == 12) {
### base twelvth: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)
my $p1 = scalar(@y);
my @base_x = @x;
my @base_y = @y;
unless ($y[0]) { # no mirror of x,0
shift @base_x;
shift @base_y;
}
if ($x[-1] == 3*$y[-1]) { # no mirror of x=3*y line
pop @base_x;
pop @base_y;
}
$#x = $#y = ($p1+scalar(@base_x))*6-1; # pre-extend arrays
for (my $i = $#base_x; $i >= 0; $i--) {
$x[$p1] = ($base_x[$i] + 3*$base_y[$i]) / 2;
$y[$p1++] = ($base_x[$i] - $base_y[$i]) / 2;
}
### with mirror 30: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p1-1)
$p2 = 2*$p1;
foreach my $i (0 .. $p1-1) {
$x[$p1] = ($x[$i] - 3*$y[$i])/2; # rotate +60
$y[$p1++] = ($x[$i] + $y[$i])/2;
$x[$p2] = ($x[$i] + 3*$y[$i])/-2; # rotate +120
$y[$p2++] = ($x[$i] - $y[$i])/2;
}
### with rotates 60,120: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p2-1)
foreach my $i (0 .. $p2-1) {
$x[$p2] = -$x[$i]; # rotate 180
$y[$p2++] = -$y[$i];
}
### with rotate 180: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)
} elsif ($self->{'symmetry'} == 6) {
my $p1 = scalar(@x);
my @base_x = @x;
my @base_y = @y;
unless ($y[0]) { # no mirror of x,0
shift @base_x;
shift @base_y;
}
if ($x[-1] == $y[-1]) { # no mirror of X=Y line
pop @base_x;
pop @base_y;
}
### base xy: join(' ',map{"$base_x[$_],$base_y[$_]"} 0 .. $#base_x)
for (my $i = $#base_x; $i >= 0; $i--) {
$x[$p1] = ($base_x[$i] - 3*$base_y[$i]) / -2; # mirror +60
$y[$p1++] = ($base_x[$i] + $base_y[$i]) / 2;
}
### with mirror 60: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p1-1)
$p2 = 2*$p1;
foreach my $i (0 .. $#x) {
$x[$p1] = ($x[$i] + 3*$y[$i])/-2; # rotate +120
$y[$p1++] = ($x[$i] - $y[$i])/2;
$x[$p2] = ($x[$i] - 3*$y[$i])/-2; # rotate +240 == -120
$y[$p2++] = ($x[$i] + $y[$i])/-2;
# should be on correct grid
# ### assert: (($x[$p1-1]+$y[$p1-1]*3) % 6 == 0 || ($x[$p1-1]+$y[$p1-1]*3) % 6 == 2)
# ### assert: (($x[$p2-1]+$y[$p2-1]*3) % 6 == 0 || ($x[$p2-1]+$y[$p2-1]*3) % 6 == 2)
}
### with rotates 120,240: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p2-1)
} else {
### assert: $self->{'symmetry'} == 4
### base quarter: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)
my $p1 = $#x;
push @y, reverse @y;
push @x, map {-$_} reverse @x;
if ($x[$p1] == 0) {
splice @x, $p1, 1; # don't duplicate X=0 in mirror
splice @y, $p1, 1;
}
if ($y[-1] == 0) {
pop @y; # omit final Y=0 ready for rotate
pop @x;
}
$p2 = scalar(@y);
### with mirror +90: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p2-1)
foreach my $i (0 .. $p2-1) {
$x[$p2] = -$x[$i]; # rotate 180
$y[$p2++] = -$y[$i];
}
### with rotate 180: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)
}
### store: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x)
### at n: scalar(@$n_to_x)
### hypot_to_n: "h=$hypot n=".scalar(@$n_to_x)
$hypot_to_n->[$hypot] = scalar(@$n_to_x);
push @$n_to_x, @x;
push @$n_to_y, @y;
# ### hypot_to_n now: join(' ',map {defined($hypot_to_n->[$_]) && "h=$_,n=$hypot_to_n->[$_]"} 0 .. $#hypot_to_n)
}
sub n_to_xy {
my ($self, $n) = @_;
### TriangularHypot n_to_xy(): $n
$n = $n - $self->{'n_start'}; # starting $n==0, warn if $n==undef
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n,$n); }
my $int = int($n);
$n -= $int; # fraction part
my $n_to_x = $self->{'n_to_x'};
my $n_to_y = $self->{'n_to_y'};
while ($int >= $#$n_to_x) {
_extend($self);
}
my $x = $n_to_x->[$int];
my $y = $n_to_y->[$int];
return ($x + $n * ($n_to_x->[$int+1] - $x),
$y + $n * ($n_to_y->[$int+1] - $y));
}
sub xy_is_visited {
my ($self, $x, $y) = @_;
if (defined $self->{'skip_parity'}) {
$x = round_nearest ($x);
$y = round_nearest ($y);
if ((($x%2) ^ ($y%2)) == $self->{'skip_parity'}) {
### XY wrong parity, no point ...
return 0;
}
}
if (defined $self->{'skip_hex'}) {
$x = round_nearest ($x);
$y = round_nearest ($y);
if ((($x%6) + 3*($y%6)) % 6 == $self->{'skip_hex'}) {
### XY wrong hex, no point ...
return 0;
}
}
return 1;
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### TriangularHypot xy_to_n(): "$x, $y points=$self->{'points'}"
$x = round_nearest ($x);
$y = round_nearest ($y);
### parity xor: ($x%2) ^ ($y%2)
### hex modulo: (($x%6) + 3*($y%6)) % 6
if (defined $self->{'skip_parity'}
&& (($x%2) ^ ($y%2)) == $self->{'skip_parity'}) {
### XY wrong parity, no point ...
return undef;
}
if (defined $self->{'skip_hex'}
&& (($x%6) + 3*($y%6)) % 6 == $self->{'skip_hex'}) {
### XY wrong hex, no point ...
return undef;
}
my $hypot = 3*$y*$y + $x*$x;
if (is_infinite($hypot)) {
# avoid infinite loop extending @hypot_to_n
return undef;
}
### $hypot
my $hypot_to_n = $self->{'hypot_to_n'};
my $n_to_x = $self->{'n_to_x'};
my $n_to_y = $self->{'n_to_y'};
while ($hypot > $#$hypot_to_n) {
_extend($self);
}
my $n = $hypot_to_n->[$hypot];
for (;;) {
if ($x == $n_to_x->[$n] && $y == $n_to_y->[$n]) {
return $n + $self->{'n_start'};
}
$n += 1;
if ($n_to_x->[$n]**2 + 3*$n_to_y->[$n]**2 != $hypot) {
### oops, hypot_to_n no good ...
return undef;
}
}
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
$x1 = abs (round_nearest ($x1));
$y1 = abs (round_nearest ($y1));
$x2 = abs (round_nearest ($x2));
$y2 = abs (round_nearest ($y2));
if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); }
if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); }
# xyradius r^2 = 1/4 * $x2**2 + 3/4 * $y2**2
# (r+1/2)^2 = r^2 + r + 1/4
# circlearea = pi*(r+1/2)^2
# each hexagon area outradius 1/2 is hexarea = sqrt(27/64)
my $r2 = $x2*$x2 + 3*$y2*$y2;
my $n = (3.15 / sqrt(27/64) / 4) * ($r2 + sqrt($r2))
* (3 - $self->{'x_inc'}); # *2 for odd or even, *1 for all
return ($self->{'n_start'},
$self->{'n_start'} + int($n));
}
1;
__END__
=for stopwords Ryde Math-PlanePath hypot ie OEIS
=head1 NAME
Math::PlanePath::TriangularHypot -- points of triangular lattice in order of hypotenuse distance
=head1 SYNOPSIS
use Math::PlanePath::TriangularHypot;
my $path = Math::PlanePath::TriangularHypot->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This path visits X,Y points on a triangular "A2" lattice in order of their
distance from the origin 0,0 and anti-clockwise around from the X axis among
those of equal distance.
=cut
# math-image --all --output=numbers --path=TriangularHypot
=pod
58 47 39 46 57 4
48 34 23 22 33 45 3
40 24 16 9 15 21 38 2
49 25 10 4 3 8 20 44 1
35 17 5 1 2 14 32 <- Y=0
50 26 11 6 7 13 31 55 -1
41 27 18 12 19 30 43 -2
51 36 28 29 37 54 -3
60 52 42 53 61 -4
^
-7 -6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6 7
The lattice is put on a square X,Y grid using every second point per
L<Math::PlanePath/Triangular Lattice>. Scaling X/2,Y*sqrt(3)/2 gives
equilateral triangles of side length 1 making a distance from X,Y to the
origin
dist^2 = (X/2^2 + (Y*sqrt(3)/2)^2
= (X^2 + 3*Y^2) / 4
For example N=19 at X=2,Y=-2 is sqrt((2**2+3*-2**2)/4) = sqrt(4) from the
origin. The next smallest after that is X=5,Y=1 at sqrt(7). The key part
is X^2 + 3*Y^2 as the distance measure to order the points.
=head2 Equal Distances
Points with the same distance are taken in anti-clockwise order around from
the X axis. For example N=14 at X=4,Y=0 is sqrt(4) from the origin, and so
are the rotated X=2,Y=2 and X=-2,Y=2 etc in other sixth segments, for a
total 6 points N=14 to N=19 all the same distance.
Symmetry means there's a set of 6 or 12 points with the same distance, so
the count of same-distance points is always a multiple of 6 or 12. There
are 6 symmetric points when on the six radial lines X=0, X=Y or X=-Y, and on
the lines Y=0, X=3*Y or X=-3*Y which are midway between them. There's 12
symmetric points for anything else, ie. anything in the twelve slices
between those twelve lines. The first set of 12 equal is N=20 to N=31 all
at sqrt(28).
There can also be further ways for the same distance to arise, as multiple
solutions to X^2+3*Y^3=d^2, but the 6-way or 12-way symmetry means there's
always a multiple of 6 or 12 in total.
=head2 Odd Points
Option C<points =E<gt> "odd"> visits just the odd points, meaning sum X+Y
odd, which is X,Y one odd the other even.
=cut
# math-image --path=TriangularHypot,points=odd --output=numbers --expression='i<=70?i:0'
=pod
points => "odd"
69 5
66 50 45 44 49 65 4
58 40 28 25 27 39 57 3
54 32 20 12 11 19 31 53 2
36 16 6 3 5 15 35 1
46 24 10 2 1 9 23 43 <- Y=0
37 17 7 4 8 18 38 -1
55 33 21 13 14 22 34 56 -2
59 41 29 26 30 42 60 -3
67 51 47 48 52 68 -4
70 -5
^
-6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6
=head2 All Points
Option C<points =E<gt> "all"> visits all integer X,Y points.
=cut
# math-image --path=TriangularHypot,points=all --output=numbers --expression='i<=71?i:0'
=pod
points => "all"
64 59 49 44 48 58 63 3
69 50 39 30 25 19 24 29 38 47 68 2
51 35 20 13 8 4 7 12 18 34 46 1
65 43 31 17 9 3 1 2 6 16 28 42 62 <- Y=0
52 36 21 14 10 5 11 15 23 37 57 -1
70 53 40 32 26 22 27 33 41 56 71 -2
66 60 54 45 55 61 67 -3
^
-6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6
=head2 Hex Points
Option C<points =E<gt> "hex"> visits X,Y points making a hexagonal grid,
=cut
# math-image --path=TriangularHypot,points=hex --output=numbers --expression='i<=61?i:0' --size=150x20
=pod
points => "hex"
50----42 49----59 5
/ \ / \
51----39 27----33 48 4
/ \ / \ /
43 22----15 21----32 3
\ / \ / \
28----16 6----11 26----41 2
/ \ / \ / \
52----34 7---- 3 5----14 47 1
/ \ / \ / \ /
60 23----12 1-----2 20----38 <- Y=0
\ / \ / \ / \
53----35 8---- 4 10----19 58 -1
\ / \ / \ /
29----17 9----13 31----46 -2
/ \ / \ /
44 24----18 25----37 -3
\ / \ / \
54----40 30----36 57 -4
\ / \ /
55----45 56----61 -5
^
-9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6 7 8 9
N=1 is at the origin X=0,Y=0, then N=2,3,4 are all at X^2+3Y^2=4 away from
the origin, etc. The joining lines drawn above show the grid pattern but
points are in order of distance from the origin.
The points are all integer X,Y with X+3Y mod 6 == 0 or 2. This is a subset
of the default "even" points in that X+Y is even but with 1 of each 3 points
skipped to make the hexagonal outline.
=head2 Hex Rotated Points
Option C<points =E<gt> "hex_rotated"> is the same hexagonal points but
rotated around so N=2 is at +60 degrees instead of on the X axis.
=cut
# math-image --path=TriangularHypot,points=hex_rotated --output=numbers --expression='i<=61?i:0' --size=150x20
=pod
points => "hex_rotated"
60----50 42----49 5
/ \ / \
51 33----27 38----48 4
\ / \ / \
34----22 15----21 41 3
/ \ / \ /
43----28 12-----6 14----26 2
/ \ / \ / \
52 16-----7 2-----5 32----47 1
\ / \ / \ / \
39----23 3-----1 11----20 59 <- Y=0
/ \ / \ / \ /
53 17-----8 4----10 37----58 -1
\ / \ / \ /
44----29 13-----9 19----31 -2
\ / \ / \
35----24 18----25 46 -3
/ \ / \ /
54 36----30 40----57 -4
\ / \ /
61----55 45----56 -5
^
-9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6 7 8 9
Points are still numbered from the X axis clockwise. The sets of points at
equal hypotenuse distances are the same as plain "hex" but the numbering is
changed by the rotation.
The points visited are all integer X,Y with X+3Y mod 6 == 0 or 4. This grid
can be viewed either as a +60 degree or a +180 degree rotation of the plain
hex.
=head2 Hex Centred Points
Option C<points =E<gt> "hex_centred"> is the same hexagonal grid as hex
above, but with the origin X=0,Y=0 in the centre of a hexagon,
=cut
# math-image --path=TriangularHypot,points=hex_centred --output=numbers --expression='i<=61?i:0' --size=150x20
=pod
points => "hex_centred"
46----45 5
/ \
39----28 27----38 4
/ \ / \
47----29 16----15 26----44 3
/ \ / \ / \
48 17-----9 8----14 43 2
\ / \ / \ /
30----18 3-----2 13----25 1
/ \ / \ / \
40 10-----4 . 1-----7 37 <- Y=0
\ / \ / \ /
31----19 5-----6 24----36 -1
/ \ / \ / \
49 20----11 12----23 54 -2
\ / \ / \ /
50----32 21----22 35----53 -3
\ / \ /
41----33 34----42 -4
\ /
51----52 -5
^
-8 -7 -6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6 7 8 9
N=1,2,3,4,5,6 are all at X^2+3Y^2=4 away from the origin, then
N=7,8,9,10,11,12, etc. The points visited are all integer X,Y with X+3Y mod
6 == 2 or 4.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::TriangularHypot-E<gt>new ()>
=item C<$path = Math::PlanePath::TriangularHypot-E<gt>new (points =E<gt> $str)>
Create and return a new hypot path object. The C<points> option can be
"even" only points with X+Y even (the default)
"odd" only points with X+Y odd
"all" all integer X,Y
"hex" hexagonal X+3Y==0,2 mod 6
"hex_rotated" hexagonal X+3Y==0,4 mod 6
"hex_centred" hexagonal X+3Y==2,4 mod 6
Create and return a new triangular hypot path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path.
For C<$n E<lt> 1> the return is an empty list as the first point at X=0,Y=0
is N=1.
Currently it's unspecified what happens if C<$n> is not an integer.
Successive points are a fair way apart, so it may not make much sense to say
give an X,Y position in between the integer C<$n>.
=item C<$n = $path-E<gt>xy_to_n ($x,$y)>
Return an integer point number for coordinates C<$x,$y>. Each integer N is
considered the centre of a unit square and an C<$x,$y> within that square
returns N.
For "even" and "odd" options only every second square in the plane has an N
and if C<$x,$y> is a position not covered then the return is C<undef>.
=back
=head1 OEIS
Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path include,
=over
L<http://oeis.org/A003136> (etc)
=back
points="even" (the default)
A003136 norms (X^2+3*Y^2)/4 which occur
A004016 count of points of norm==n
A035019 skipping zero counts
A088534 counting only in the twelfth 0<=X<=Y
The counts in these sequences are expressed as norm = x^2+x*y+y^2. That x,y
is related to the "even" X,Y on the path here by a -45 degree rotation,
x = (Y-X)/2 X = 2*(x+y)
y = (X+Y)/2 Y = 2*(y-x)
norm = x^2+x*y+y^2
= ((Y-X)/2)^2 + (Y-X)/2 * (X+Y)/2 + ((X+Y)/2)^2
= (X^2 + 3*Y^2) / 4
The X^2+3*Y^2 is the dist^2 described above for equilateral triangles of
unit side. The factor of /4 scales the distance but of course doesn't
change the sets of points of the same distance.
points="all"
A092572 norms X^2+3*Y^2 which occur
A158937 norms X^2+3*Y^2 which occur, X>0,Y>0 with repeats
A092573 count of points norm==n for X>0,Y>0
A092574 norms X^2+3*Y^2 which occur for X>0,Y>0, gcd(X,Y)=1
A092575 count of points norm==n for X>0,Y>0, gcd(X,Y)=1
ie. X,Y no common factor
=cut
# ((Y-X)/2)^2 + (Y-X)/2 * (X+Y)/2 + ((X+Y)/2)^2
# = YY-2XY+XX + YY-XX + XX+2XY+YY / 4
# = 3YY + XX
=pod
points="hex"
A113062 count of points norm=X^2+3*Y^2=4*n (theta series)
A113063 divided by 3
points="hex_centred"
A217219 count of points norm=X^2+3*Y^2=4*n (theta series)
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::Hypot>,
L<Math::PlanePath::HypotOctant>,
L<Math::PlanePath::PixelRings>,
L<Math::PlanePath::HexSpiral>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|