/usr/share/perl5/Math/PlanePath/TriangleSpiral.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 | # Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
package Math::PlanePath::TriangleSpiral;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'round_nearest';
# uncomment this to run the ### lines
#use Smart::Comments;
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_even;
use constant parameter_info_array =>
[ Math::PlanePath::Base::Generic::parameter_info_nstart1() ];
sub x_negative_at_n {
my ($self) = @_;
return $self->n_start + 4;
}
sub y_negative_at_n {
my ($self) = @_;
return $self->n_start + 6;
}
sub _UNDOCUMENTED__dxdy_list_at_n {
my ($self) = @_;
return $self->n_start + 3;
}
use constant dx_minimum => -1;
use constant dx_maximum => 2;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
use constant 1.02 _UNDOCUMENTED__dxdy_list => (2,0, # E
-1,1, # NW
-1,-1); # SW
use constant absdx_minimum => 1;
use constant dsumxy_minimum => -2; # SW diagonal
use constant dsumxy_maximum => 2; # dX=+2 horiz
use constant ddiffxy_minimum => -2; # NW diagonal
use constant ddiffxy_maximum => 2; # dX=+2 horiz
use constant dir_maximum_dxdy => (-1,-1); # at most South-West diagonal
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new (@_);
if (! defined $self->{'n_start'}) {
$self->{'n_start'} = $self->default_n_start;
}
return $self;
}
# base at bottom right corner
# d = [ 1, 2, 3 ]
# n = [ 2, 11, 29 ]
# $d = 1/2 + sqrt(2/9 * $n + -7/36)
# = 1/2 + sqrt(8/36 * $n + -7/36)
# = 0.5 + sqrt(8*$n + -7)/6
# = (1 + 2*sqrt(8*$n + -7)/6) / 2
# = (1 + sqrt(8*$n + -7)/3) / 2
# = (3 + sqrt(8*$n - 7)) / 6
#
# $n = (9/2*$d**2 + -9/2*$d + 2)
# = (4.5*$d - 4.5)*$d + 2
#
# top of pyramid
# d = [ 1, 2, 3 ]
# n = [ 4, 16, 37 ]
# $n = (9/2*$d**2 + -3/2*$d + 1)
# so remainder from there
# rem = $n - (9/2*$d**2 + -3/2*$d + 1)
# = $n - (4.5*$d*$d - 1.5*$d + 1)
# = $n - ((4.5*$d - 1.5)*$d + 1)
#
#
sub n_to_xy {
my ($self, $n) = @_;
#### TriangleSpiral n_to_xy: $n
$n = $n - $self->{'n_start'}; # starting $n==0, warn if $n==undef
if ($n < 0) { return; }
my $d = int ((3 + sqrt(8*$n+1)) / 6);
#### $d
$n -= (9*$d - 3)*$d/2;
#### remainder: $n
if ($n <= 3*$d) {
### sides, remainder pos/neg from top
return (-$n,
2*$d - abs($n));
} else {
### rightwards from bottom left
### remainder: $n - 3*$d
# corner is x=-3*$d
# so -3*$d + 2*($n - 3*$d)
# = -3*$d + 2*$n - 6*$d
# = -9*$d + 2*$n
# = 2*$n - 9*$d
return (2*$n - 9*$d,
-$d);
}
}
sub xy_to_n {
my ($self, $x, $y) = @_;
$x = round_nearest ($x);
$y = round_nearest ($y);
### xy_to_n(): "$x,$y"
if (($x ^ $y) & 1) {
return undef; # nothing on odd points
}
if ($y < 0 && 3*$y <= $x && $x <= -3*$y) {
### bottom horizontal
# negative y, at vertical x=0
# [ -1, -2, -3, -4, -5, -6 ]
# [ 8.5, 25, 50.5, 85, 128.5, 181 ]
# $n = (9/2*$y**2 + -3*$y + 1)
# = (4.5*$y*$y + -3*$y + 1)
# = ((4.5*$y -3)*$y + 1)
# from which $x/2
#
return ((9*$y - 6)*$y/2) + $x/2 + $self->{'n_start'};
} else {
### sides diagonal
#
# positive y, x=0 centres
# [ 2, 4, 6, 8 ]
# [ 4, 16, 37, 67 ]
# n = (9/8*$d**2 + -3/4*$d + 1)
# = (9/8*$d + -3/4)*$d + 1
# = (9*$d + - 6)*$d/8 + 1
# from which -$x offset
#
my $d = abs($x) + $y;
return ((9*$d - 6)*$d/8) - $x + $self->{'n_start'};
}
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
my $d = 0;
foreach my $x ($x1, $x2) {
foreach my $y ($y1, $y2) {
$d = max ($d,
1 + ($y < 0 && 3*$y <= $x && $x <= -3*$y
? -$y # bottom horizontal
: int ((abs($x) + $y) / 2))); # sides
}
}
return ($self->{'n_start'},
(9*$d - 9)*$d/2 + $self->{'n_start'});
}
1;
__END__
=for stopwords Ryde Math-PlanePath hendecagonal 11-gonal (s+2)-gonal OEIS hendecagonals
=head1 NAME
Math::PlanePath::TriangleSpiral -- integer points drawn around an equilateral triangle
=head1 SYNOPSIS
use Math::PlanePath::TriangleSpiral;
my $path = Math::PlanePath::TriangleSpiral->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This path makes a spiral shaped as an equilateral triangle (each side the
same length).
16 4
/ \
17 15 3
/ \
18 4 14 ... 2
/ / \ \ \
19 5 3 13 32 1
/ / \ \ \
20 6 1-----2 12 31 <- Y=0
/ / \ \
21 7-----8-----9----10----11 30 -1
/ \
22----23----24----25----26----27----28----29 -2
^
-6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6 7 8
Cells are spread horizontally to fit on a square grid as per
L<Math::PlanePath/Triangular Lattice>. The horizontal gaps are 2, so for
instance n=1 is at x=0,y=0 then n=2 is at x=2,y=0. The diagonals are 1
across and 1 up or down, so n=3 is at x=1,y=1. Each alternate row is offset
from the one above or below.
This grid is the same as the C<HexSpiral> and the path is like that spiral
except instead of a flat top and SE,SW sides it extends to triangular peaks.
The result is a longer loop and each successive loop is step=9 longer than
the previous (whereas the C<HexSpiral> is step=6 more).
X<Triangular numbers>The triangular numbers 1, 3, 6, 10, 15, 21, 28, 36 etc,
k*(k+1)/2, fall one before the successive corners of the triangle, so when
plotted make three lines going vertically and angled down left and right.
The 11-gonal "hendecagonal" numbers 11, 30, 58, etc, k*(9k-7)/2 fall on a
straight line horizontally to the right. (As per the general rule that a
step "s" lines up the (s+2)-gonal numbers.)
=head2 N Start
The default is to number points starting N=1 as shown above. An optional
C<n_start> can give a different start with the same shape etc. For example
to start at 0,
=cut
# math-image --path=TriangleSpiral,n_start=0 --expression='i<=31?i:0' --output=numbers_dash
=pod
n_start => 0 15
/ \
16 14
/ \
17 3 13
/ / \ \
18 4 2 12 ...
/ / \ \ \
19 5 0-----1 11 30
/ / \ \
20 6-----7-----8-----9----10 29
/ \
21----22----23----24----25----26----27----28
With this adjustment the X axis N=0,1,11,30,etc is the hendecagonal numbers
(9k-7)*k/2. And N=0,8,25,etc diagonally South-East is the hendecagonals of
the second kind which is (9k-7)*k/2 for k negative.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::TriangleSpiral-E<gt>new ()>
=item C<$path = Math::PlanePath::TriangleSpiral-E<gt>new (n_start =E<gt> $n)>
Create and return a new triangle spiral object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path.
For C<$n < 1> the return is an empty list, it being considered the path
starts at 1.
=item C<$n = $path-E<gt>xy_to_n ($x,$y)>
Return the point number for coordinates C<$x,$y>. C<$x> and C<$y> are
each rounded to the nearest integer, which has the effect of treating each
C<$n> in the path as a square of side 1.
Only every second square in the plane has an N. If C<$x,$y> is a
position without an N then the return is C<undef>.
=back
=head1 OEIS
Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include
=over
L<http://oeis.org/A117625> (etc)
=back
n_start=1 (default)
A010054 turn 1=left,0=straight, extra initial 1
A117625 N on X axis
A081272 N on Y axis
A006137 N on X negative axis
A064226 N on X=Y leading diagonal, but without initial value=1
A064225 N on X=Y negative South-West diagonal
A081267 N on X=-Y negative South-East diagonal
A081589 N on ENE slope dX=3,dY=1
A038764 N on WSW slope dX=-3,dY=-1
A060544 N on ESE slope dX=3,dY=-1 diagonal
A063177 total sum previous row or diagonal
n_start=0
A051682 N on X axis (11-gonal numbers)
A062741 N on Y axis
A062708 N on X=Y leading diagonal
A081268 N on X=Y+2 diagonal (right of leading diagonal)
A062728 N on South-East diagonal (11-gonal second kind)
A062725 N on South-West diagonal
A081275 N on ENE slope from X=2,Y=0 then dX=+3,dY=+1
A081266 N on WSW slope dX=-3,dY=-1
A081271 N on X=2 vertical
n_start=-1
A023531 N position of turns (to the left)
1 at N=k*(k+3)/2
A023531 is C<n_start=-1> to match its "offset=0" for the first turn, being
the second point of the path. A010054 which is 1 at triangular numbers
k*(k+1)/2 is the same except for an extra initial 1.
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::TriangleSpiralSkewed>,
L<Math::PlanePath::HexSpiral>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|