This file is indexed.

/usr/share/perl5/Math/PlanePath/TriangleSpiral.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


package Math::PlanePath::TriangleSpiral;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'round_nearest';

# uncomment this to run the ### lines
#use Smart::Comments;


*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_even;
use constant parameter_info_array =>
  [ Math::PlanePath::Base::Generic::parameter_info_nstart1() ];

sub x_negative_at_n {
  my ($self) = @_;
  return $self->n_start + 4;
}
sub y_negative_at_n {
  my ($self) = @_;
  return $self->n_start + 6;
}
sub _UNDOCUMENTED__dxdy_list_at_n {
  my ($self) = @_;
  return $self->n_start + 3;
}
use constant dx_minimum => -1;
use constant dx_maximum => 2;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
use constant 1.02 _UNDOCUMENTED__dxdy_list => (2,0,    # E
                                               -1,1,   # NW
                                               -1,-1); # SW
use constant absdx_minimum => 1;
use constant dsumxy_minimum => -2; # SW diagonal
use constant dsumxy_maximum => 2;  # dX=+2 horiz
use constant ddiffxy_minimum => -2;  # NW diagonal
use constant ddiffxy_maximum => 2;   # dX=+2 horiz
use constant dir_maximum_dxdy => (-1,-1); # at most South-West diagonal


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new (@_);
  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }
  return $self;
}

# base at bottom right corner
#   d = [ 1,  2,  3 ]
#   n = [ 2,  11, 29 ]
#   $d = 1/2 + sqrt(2/9 * $n + -7/36)
#      = 1/2 + sqrt(8/36 * $n + -7/36)
#      = 0.5 + sqrt(8*$n + -7)/6
#      = (1 + 2*sqrt(8*$n + -7)/6) / 2
#      = (1 + sqrt(8*$n + -7)/3) / 2
#      = (3 + sqrt(8*$n - 7)) / 6
#
#   $n = (9/2*$d**2 + -9/2*$d + 2)
#      = (4.5*$d - 4.5)*$d + 2
#
# top of pyramid
#   d = [ 1,  2,  3 ]
#   n = [ 4, 16, 37 ]
#   $n = (9/2*$d**2 + -3/2*$d + 1)
# so remainder from there
#   rem = $n - (9/2*$d**2 + -3/2*$d + 1)
#       = $n - (4.5*$d*$d - 1.5*$d + 1)
#       = $n - ((4.5*$d - 1.5)*$d + 1)
#
#
sub n_to_xy {
  my ($self, $n) = @_;
  #### TriangleSpiral n_to_xy: $n

  $n = $n - $self->{'n_start'};  # starting $n==0, warn if $n==undef
  if ($n < 0) { return; }

  my $d = int ((3 + sqrt(8*$n+1)) / 6);
  #### $d

  $n -= (9*$d - 3)*$d/2;
  #### remainder: $n

  if ($n <= 3*$d) {
    ### sides, remainder pos/neg from top
    return (-$n,
            2*$d - abs($n));
  } else {
    ### rightwards from bottom left
    ### remainder: $n - 3*$d
    # corner is x=-3*$d
    # so -3*$d + 2*($n - 3*$d)
    #  = -3*$d + 2*$n - 6*$d
    #  = -9*$d + 2*$n
    #  = 2*$n - 9*$d
    return (2*$n - 9*$d,
            -$d);
  }
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  ### xy_to_n(): "$x,$y"

  if (($x ^ $y) & 1) {
    return undef;  # nothing on odd points
  }

  if ($y < 0 && 3*$y <= $x && $x <= -3*$y) {
    ### bottom horizontal
    # negative y, at vertical x=0
    #   [  -1, -2,   -3, -4,  -5,   -6 ]
    #   [ 8.5, 25, 50.5, 85, 128.5, 181 ]
    #   $n = (9/2*$y**2 + -3*$y + 1)
    #      = (4.5*$y*$y + -3*$y + 1)
    #      = ((4.5*$y -3)*$y + 1)
    # from which $x/2
    #
    return ((9*$y - 6)*$y/2) + $x/2 + $self->{'n_start'};

  } else {
    ### sides diagonal
    #
    # positive y, x=0 centres
    #   [ 2,  4,  6,  8 ]
    #   [ 4, 16,  37, 67 ]
    #   n = (9/8*$d**2 + -3/4*$d + 1)
    #     = (9/8*$d + -3/4)*$d + 1
    #     = (9*$d + - 6)*$d/8 + 1
    # from which -$x offset
    #
    my $d = abs($x) + $y;
    return ((9*$d - 6)*$d/8) - $x + $self->{'n_start'};
  }
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  my $d = 0;
  foreach my $x ($x1, $x2) {
    foreach my $y ($y1, $y2) {
      $d = max ($d,
                1 + ($y < 0 && 3*$y <= $x && $x <= -3*$y
                     ? -$y                          # bottom horizontal
                     : int ((abs($x) + $y) / 2)));  # sides
    }
  }
  return ($self->{'n_start'},
          (9*$d - 9)*$d/2 + $self->{'n_start'});
}

1;
__END__

=for stopwords Ryde Math-PlanePath hendecagonal 11-gonal (s+2)-gonal OEIS hendecagonals

=head1 NAME

Math::PlanePath::TriangleSpiral -- integer points drawn around an equilateral triangle

=head1 SYNOPSIS

 use Math::PlanePath::TriangleSpiral;
 my $path = Math::PlanePath::TriangleSpiral->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path makes a spiral shaped as an equilateral triangle (each side the
same length).

                      16                                 4
                     /  \   
                   17    15                              3
                  /        \  
                18     4    14    ...                    2
               /     /  \     \     \
             19     5     3    13    32                  1
            /     /        \     \     \
          20     6     1-----2    12    31          <- Y=0
         /     /                    \     \
       21     7-----8-----9----10----11    30           -1
      /                                      \
    22----23----24----25----26----27----28----29        -2
                       
                       ^
    -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7  8

Cells are spread horizontally to fit on a square grid as per
L<Math::PlanePath/Triangular Lattice>.  The horizontal gaps are 2, so for
instance n=1 is at x=0,y=0 then n=2 is at x=2,y=0.  The diagonals are 1
across and 1 up or down, so n=3 is at x=1,y=1.  Each alternate row is offset
from the one above or below.

This grid is the same as the C<HexSpiral> and the path is like that spiral
except instead of a flat top and SE,SW sides it extends to triangular peaks.
The result is a longer loop and each successive loop is step=9 longer than
the previous (whereas the C<HexSpiral> is step=6 more).

X<Triangular numbers>The triangular numbers 1, 3, 6, 10, 15, 21, 28, 36 etc,
k*(k+1)/2, fall one before the successive corners of the triangle, so when
plotted make three lines going vertically and angled down left and right.

The 11-gonal "hendecagonal" numbers 11, 30, 58, etc, k*(9k-7)/2 fall on a
straight line horizontally to the right.  (As per the general rule that a
step "s" lines up the (s+2)-gonal numbers.)

=head2 N Start

The default is to number points starting N=1 as shown above.  An optional
C<n_start> can give a different start with the same shape etc.  For example
to start at 0,

=cut

# math-image --path=TriangleSpiral,n_start=0 --expression='i<=31?i:0' --output=numbers_dash

=pod

    n_start => 0      15   
                     /  \  
                   16    14
                  /        \     
                17     3    13   
               /     /  \     \  
             18     4     2    12   ...  
            /     /        \     \     \ 
          19     5     0-----1    11    30 
         /     /                    \     \ 
       20     6-----7-----8-----9----10    29 
      /                                      \ 
    21----22----23----24----25----26----27----28 

With this adjustment the X axis N=0,1,11,30,etc is the hendecagonal numbers
(9k-7)*k/2.  And N=0,8,25,etc diagonally South-East is the hendecagonals of
the second kind which is (9k-7)*k/2 for k negative.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::TriangleSpiral-E<gt>new ()>

=item C<$path = Math::PlanePath::TriangleSpiral-E<gt>new (n_start =E<gt> $n)>

Create and return a new triangle spiral object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.

For C<$n < 1> the return is an empty list, it being considered the path
starts at 1.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  C<$x> and C<$y> are
each rounded to the nearest integer, which has the effect of treating each
C<$n> in the path as a square of side 1.

Only every second square in the plane has an N.  If C<$x,$y> is a
position without an N then the return is C<undef>.

=back

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include

=over

L<http://oeis.org/A117625> (etc)

=back

    n_start=1 (default)
      A010054     turn 1=left,0=straight, extra initial 1

      A117625     N on X axis
      A081272     N on Y axis
      A006137     N on X negative axis
      A064226     N on X=Y leading diagonal, but without initial value=1
      A064225     N on X=Y negative South-West diagonal
      A081267     N on X=-Y negative South-East diagonal
      A081589     N on ENE slope dX=3,dY=1
      A038764     N on WSW slope dX=-3,dY=-1
      A060544     N on ESE slope dX=3,dY=-1 diagonal

      A063177     total sum previous row or diagonal

    n_start=0
      A051682     N on X axis (11-gonal numbers)
      A062741     N on Y axis
      A062708     N on X=Y leading diagonal
      A081268     N on X=Y+2 diagonal (right of leading diagonal)
      A062728     N on South-East diagonal (11-gonal second kind)
      A062725     N on South-West diagonal
      A081275     N on ENE slope from X=2,Y=0 then dX=+3,dY=+1
      A081266     N on WSW slope dX=-3,dY=-1
      A081271     N on X=2 vertical

    n_start=-1
      A023531     N position of turns (to the left)
                    1 at N=k*(k+3)/2

A023531 is C<n_start=-1> to match its "offset=0" for the first turn, being
the second point of the path.  A010054 which is 1 at triangular numbers
k*(k+1)/2 is the same except for an extra initial 1.

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::TriangleSpiralSkewed>,
L<Math::PlanePath::HexSpiral>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut