This file is indexed.

/usr/share/perl5/Math/PlanePath/R5DragonMidpoint.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
# Copyright 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.




# math-image --path=R5DragonMidpoint --lines --scale=40
#
# math-image --path=R5DragonMidpoint --all --output=numbers_dash --size=78x60
# math-image --path=R5DragonMidpoint,arms=6 --all --output=numbers_dash --size=78x60


package Math::PlanePath::R5DragonMidpoint;
use 5.004;
use strict;
use List::Util 'min'; # 'max'
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
        'Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'digit_join_lowtohigh';

# uncomment this to run the ### lines
# use Smart::Comments;


use constant n_start => 0;
use constant parameter_info_array => [ { name        => 'arms',
                                         share_key   => 'arms_4',
                                         display     => 'Arms',
                                         type        => 'integer',
                                         minimum     => 1,
                                         maximum     => 4,
                                         default     => 1,
                                         width       => 1,
                                         description => 'Arms',
                                       } ];

{
  my @x_negative_at_n = (undef, 14,5,2,2);
  sub x_negative_at_n {
    my ($self) = @_;
    return $x_negative_at_n[$self->{'arms'}];
  }
}
{
  my @y_negative_at_n = (undef, 93,35,11,7);
  sub y_negative_at_n {
    my ($self) = @_;
    return $y_negative_at_n[$self->{'arms'}];
  }
}


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);
  $self->{'arms'} = max(1, min(4, $self->{'arms'} || 1));
  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### R5DragonMidpoint n_to_xy(): $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n, $n); }

  {
    my $int = int($n);
    if ($n != $int) {
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+$self->{'arms'});
      my $frac = $n - $int;  # inherit possible BigFloat
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int; # BigFloat int() gives BigInt, use that
  }

  # ENHANCE-ME: own code ...
  #
  require Math::PlanePath::R5DragonCurve;
  my ($x1,$y1) = $self->Math::PlanePath::R5DragonCurve::n_to_xy($n);
  my ($x2,$y2) = $self->Math::PlanePath::R5DragonCurve::n_to_xy($n+$self->{'arms'});

  # x = x1+x2
  # y = y1+y2
  # rotx = x+y = (y1+y2)+(x1+x2)
  # roty = y-x = (y1+y2)-(x1+x2)
  # cx = (rotx-1)/2
  # cy = (rotx+1)/2

  $x1 += $x2;
  $y1 += $y2;
  return (($x1+$y1-1)/2,
          ($y1-$x1+1)/2);
}


# table of triplets $ndigit,$dx,$dy for ($y%10)*10+($x%10), total 300 entries
my @yx_to_digdxdy # 30 each row
  = (0,0,0,   1,-1,0,  1,0,-1,  2,-1,-1, 3,-2,-1,
     3,-1,-2, 4,-2,-2, 0,-2,0,  2,-1,-1, 4,0,-2,
     4,-2,0,  2,-1,-1, 0,0,-2,  4,0,0,   3,-1,0,
     3,0,-1,  2,-1,-1, 1,-2,-1, 1,-1,-2, 0,-2,-2,
     3,-2,-1, 3,-1,-2, 4,-2,-2, 0,-2,0,  2,-1,-1,
     4,0,-2,  0,0,0,   1,-1,0,  1,0,-1,  2,-1,-1,
     3,-1,0,  3,0,-1,  2,-1,-1, 1,-2,-1, 1,-1,-2,
     0,-2,-2, 4,-2,0,  2,-1,-1, 0,0,-2,  4,0,0,
     2,-1,-1, 4,0,-2,  0,0,0,   1,-1,0,  1,0,-1,
     2,-1,-1, 3,-2,-1, 3,-1,-2, 4,-2,-2, 0,-2,0,
     1,-1,-2, 0,-2,-2, 4,-2,0,  2,-1,-1, 0,0,-2,
     4,0,0,   3,-1,0,  3,0,-1,  2,-1,-1, 1,-2,-1,
     1,0,-1,  2,-1,-1, 3,-2,-1, 3,-1,-2, 4,-2,-2,
     0,-2,0,  2,-1,-1, 4,0,-2,  0,0,0,   1,-1,0,
     0,0,-2,  4,0,0,   3,-1,0,  3,0,-1,  2,-1,-1,
     1,-2,-1, 1,-1,-2, 0,-2,-2, 4,-2,0,  2,-1,-1,
     4,-2,-2, 0,-2,0,  2,-1,-1, 4,0,-2,  0,0,0,
     1,-1,0,  1,0,-1,  2,-1,-1, 3,-2,-1, 3,-1,-2,
     2,-1,-1, 1,-2,-1, 1,-1,-2, 0,-2,-2, 4,-2,0,
     2,-1,-1, 0,0,-2,  4,0,0,   3,-1,0,  3,0,-1,
    );

# arm $x $y         2 | 1     Y=1
#  0   0  0         3 | 0     Y=0
#  1   0  1       ----+----
#  2  -1  1       X=-1  X=0
#  3  -1  0
my @xy_to_arm = ([0,   # x=0,y=0
                  1],  # x=0,y=1
                 [3,   # x=-1,y=0
                  2]); # x=-1,y=1

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### R5DragonMidpoint xy_to_n(): "$x, $y"

  $x = round_nearest($x);
  $y = round_nearest($y);

  foreach my $overflow (2*$x + 2*$y, 2*$x - 2*$y) {
    if (is_infinite($overflow)) { return $overflow; }
  }
  my $zero = ($x * 0 * $y); # inherit bignum 0
  my @ndigits;     # low to high;

  for (;;) {
    last if ($x <= 0 && $x >= -1 && $y <= 1 && $y >= 0);

    my $k = 3*(10*($y%10) + ($x%10));

    ### at: "x=$x,y=$y (k=$k)  ndigits=".join(',',@ndigits)."  digit=$yx_to_digdxdy[$k]  offset=$yx_to_digdxdy[$k+1],$yx_to_digdxdy[$k+2] to ".($x+$yx_to_digdxdy[$k+1]).",".($y+$yx_to_digdxdy[$k+2])

    push @ndigits, $yx_to_digdxdy[$k++]; # ndigit
    $x += $yx_to_digdxdy[$k++];          # dx
    $y += $yx_to_digdxdy[$k];            # dy

    # (x+iy)/(1+2i)
    # = (x+iy)*(1-2i) / (1+4)
    # = (x+iy)*(1-2i) / 5
    # = (x+2y +i(y-2x)) / 5
    #
    ### assert: abs($x + 2 * $y) % 5 == 0
    ### assert: abs($y - 2 * $x) % 5 == 0

    ($x,$y) = (($x+2*$y) / 5,    # divide 1+2i
               ($y-2*$x) / 5);
    ### divide down to: "$x,$y"
  }

  ### final: "xy=$x,$y"
  my $arm = $xy_to_arm[$x]->[$y];
  ### $arm

  my $arms_count = $self->arms_count;
  if ($arm >= $arms_count) {
    return undef;
  }
  if ($arm & 1) {
    ### flip ...
    @ndigits = map {4-$_} @ndigits;
  }

  return digit_join_lowtohigh(\@ndigits, 5, $zero) * $arms_count + $arm;
}

#------------------------------------------------------------------------------

# whole plane covered when arms==4
sub xy_is_visited {
  my ($self, $x, $y) = @_;
  return ($self->{'arms'} == 4
          || defined($self->xy_to_n($x,$y)));
}

#------------------------------------------------------------------------------

# FIXME: half size of R5DragonCurve ?
#
# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### R5DragonCurve rect_to_n_range(): "$x1,$y1  $x2,$y2"

  my $xmax = int(max(abs($x1),abs($x2)));
  my $ymax = int(max(abs($y1),abs($y2)));
  return (0,
          ($xmax*$xmax + $ymax*$ymax)
          * 6
          * $self->{'arms'});
}

#-----------------------------------------------------------------------------
# level_to_n_range()

sub level_to_n_range {
  my ($self, $level) = @_;
  return (0, (5**$level - 1) * $self->{'arms'});
}
sub n_to_level {
  my ($self, $n) = @_;
  if ($n < 0) { return undef; }
  if (is_infinite($n)) { return $n; }
  $n = round_nearest($n);
  _divrem_mutate ($n, $self->{'arms'});
  my ($pow, $exp) = round_down_pow ($n, 5);
  return $exp + 1;
}

#-----------------------------------------------------------------------------
1;
__END__

=for stopwords eg Ryde Math-PlanePath Nlevel et al terdragon ie Xmod10 Ymod10 Jorg Arndt

=head1 NAME

Math::PlanePath::R5DragonMidpoint -- R5 dragon curve midpoints

=head1 SYNOPSIS

 use Math::PlanePath::R5DragonMidpoint;
 my $path = Math::PlanePath::R5DragonMidpoint->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Arndt, Jorg>This is midpoints of the R5 dragon curve by Jorg Arndt,

                                       31--30                       11
                                        |   |
                                       32  29                       10
                                        |   |
               51--50          35--34--33  28--27--26                9
                |   |           |                   |
               52  49          36--37--38  23--24--25                8
                |   |                   |   |
       55--54--53  48--47--46  41--40--39  22                        7
        |                   |   |           |
       56--57--58  63--64  45  42  19--20--21                        6
                |   |   |   |   |   |
       81--80  59  62  65  44--43  18--17--16  11--10                5
        |   |   |   |   |                   |   |   |
       82  79  60--61  66--67--68          15  12   9                4
        |   |                   |           |   |   |
    ..-83  78--77--76  71--70--69          14--13   8-- 7-- 6        3
                    |   |                                   |
                   75  72                           3-- 4-- 5        2
                    |   |                           |
                   74--73                           2                1
                                                    |
                                                0-- 1           <- Y=0

        ^   ^   ^   ^   ^   ^   ^   ^   ^   ^   ^   ^   ^   ^
      -10  -9  -8  -7  -6  -5  -4  -3  -2  -1  X=0  1   2   3

The points are the middle of each edge of the C<R5DragonCurve>, rotated -45
degrees, shrunk by sqrt(2). and shifted to the origin.

              *--11--*     *--7--*     R5DragonCurve
              |      |     |     |     and its midpoints
             12     10     8     6
              |      |     |     |
       *--17--*--13--*--9--*--5--*
       |      |      |     |
      18     16     14     4
       |      |      |     |
    ..-*      *--15--*     *--3--*
                                 |
                                 2
                                 |
                           +--1--*

=head2 Arms

Multiple copies of the curve can be selected, each advancing successively.
Like the main C<R5DragonCurve> this midpoint curve covers 1/4 of the plane
and 4 arms rotated by 0, 90, 180, 270 degrees mesh together perfectly.  With
4 arms all integer X,Y points are visited.

C<arms =E<gt> 4> begins as follows.  N=0,4,8,12,16,etc is the first arm (the
same shape as the plain curve above), then N=1,5,9,13,17 the second,
N=2,6,10,14 the third, etc.

    arms=>4     76--80-...                                6
                 |
                72--68--64  44--40                        5
                         |   |   |
                25--21  60  48  36                        4
                 |   |   |   |   |
                29  17  56--52  32--28--24  75--79        3
                 |   |                   |   |   |
        41--37--33  13-- 9-- 5  12--16--20  71  83        2
         |                   |   |           |   |
        45--49--53   6-- 2   1   8  59--63--67  ...       1
                 |   |           |   |
    ... 65--61--57  10   3   0-- 4  55--51--47        <- Y=0
     |   |           |   |                   |
    81  69  22--18--14   7--11--15  35--39--43           -1
     |   |   |                   |   |
    77--73  26--30--34  54--58  19  31                   -2
                     |   |   |   |   |
                    38  50  62  23--27                   -3
                     |   |   |
                    42--46  66--70--74                   -4
                                     |
                            ...-82--78                   -5

     ^   ^   ^   ^   ^   ^   ^   ^   ^   ^   ^   ^
    -6  -5  -4  -3  -2  -1  X=0  1   2   3   4   5

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::R5DragonMidpoint-E<gt>new ()>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

Fractional positions give an X,Y position along a straight line between the
integer positions.

=item C<$n = $path-E<gt>n_start()>

Return 0, the first N in the path.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, 5**$level - 1)>, or for multiple arms return C<(0, $arms *
5**$level - 1)>.

There are 5^level segments comprising the curve, or arms*5^level when
multiple arms, numbered starting from 0.

=back

=head1 FORMULAS

=head2 X,Y to N

An X,Y point can be turned into N by dividing out digits of a complex base
1+2i.  At each step the low base-5 digit is formed from X,Y and an
adjustment applied to move X,Y to a multiple of 1+2i ready to divide out.

A 10x10 table is used for the digit and adjustments, indexed by Xmod10 and
Ymod10.  There's probably an a*X+b*Y mod 5 or mod 20 for a smaller table.
But in any case once the adjustment is found the result is

    Ndigit = digit_table[X mod 10, Y mod 10]  # low to high
    Xm = X + Xadj_table [X mod 10, Y mod 10]
    Ym = Y + Yadj_table [X mod 10, Y mod 10]

    new X,Y = (Xm,Ym) / (1+2i)
            = (Xm,Ym) * (1-2i) / 5
            = ((Xm+2*Ym)/5, (Ym-2*Xm)/5)

These X,Y reductions eventually reach one of the starting points for the
four arms

    X,Y endpoint   Arm        +---+---+
    ------------   ---        | 2 | 1 |  Y=1
        0, 0        0         +---+---+     
        0, 1        1         | 3 | 0 |  Y=0
       -1, 1        2         +---+---+     
       -1, 0        3         X=-1 X=0      

For arms 1 and 3 the digits must be flipped 4-digit, so 0,1,2,3,4 ->
4,3,2,1,0.  The arm number and hence whether this flip is needed is not
known until reaching the endpoint.

    if arm odd
    then  N = 5^numdigits - 1 - N

If only some of the arms are of interest then reaching one of the other arm
numbers means the original X,Y was outside the desired curve.

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::R5DragonCurve>

L<Math::PlanePath::DragonMidpoint>,
L<Math::PlanePath::TerdragonMidpoint>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut