This file is indexed.

/usr/share/perl5/Math/PlanePath/MultipleRings.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
# Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.



# math-image --path=MultipleRings --lines
#
# math-image --wx --path=MultipleRings,ring_shape=polygon,step=5  --scale=50 --figure=ring --all

#
# FIXME: $y equal across bottom side centre ?


package Math::PlanePath::MultipleRings;
use 5.004;
use strict;
use Carp 'croak';
#use List::Util 'min','max';
*min = \&Math::PlanePath::_min;
*max = \&Math::PlanePath::_max;

# Math::Trig has asin_real() too, but it just runs the blob of code in
# Math::Complex -- prefer libm
use Math::Libm 'asin', 'hypot';

use vars '$VERSION', '@ISA';
@ISA = ('Math::PlanePath');
use Math::PlanePath;
$VERSION = 117;

use Math::PlanePath::Base::Generic
  'is_infinite';
use Math::PlanePath::SacksSpiral;

# uncomment this to run the ### lines
# use Smart::Comments;


use constant 1.02; # for leading underscore
use constant _PI => 2*atan2(1,0);

use constant figure => 'circle';
use constant n_frac_discontinuity => 0;
use constant gcdxy_minimum => 0;

use constant parameter_info_array =>
  [{ name        => 'step',
     display     => 'Step',
     share_key   => 'step_6_min3',
     type        => 'integer',
     minimum     => 0,
     default     => 6,
     width       => 3,
     description => 'How much longer each ring is than the preceding.',
   },

   { name        => 'ring_shape',
     display     => 'Ring Shape',
     type        => 'enum',
     default     => 'circle',
     choices     => ['circle','polygon'],
     choices_display => ['Circle','Polygon'],
     description     => 'The shape of each ring, either a circle or a polygon of "step" many sides.',
   },
  ];

#------------------------------------------------------------------------------
# Electricity transmission cable in sixes, with one at centre ?
#    7 poppy
#    19 hyacinth
#    37 marigold
#    61 cowslip
#    127 bluebonnet

# An n-gon of points many vertices has each angle
#     alpha = 2*pi/points
# The radius r to a vertex, using a line perpendicular to the line segment
#     sin(alpha/2) = (1/2)/r
#     r = 0.5 / sin(pi/points)
# And with points = d*step, starting from d=1
#     r = 0.5 / sin(pi/(d*step))

# step==0 is a straight line y==0 x=0,1,2,..., anything else whole plane
sub x_negative {
  my ($self) = @_;
  return ($self->{'step'} > 0);
}
*y_negative = \&x_negative;

sub y_maximum {
  my ($self) = @_;
  return ($self->{'step'} == 0 ? 0  # step=0 always Y=0
          : undef);
}

sub x_negative_at_n {
  my ($self) = @_;
  return ($self->{'step'} == 0 ? undef  # no negatives
          : $self->{'step'} == 1 ? 3
          : $self->n_start + int($self->{'step'}/4) + 1);
}
sub y_negative_at_n {
  my ($self) = @_;
  return ($self->{'step'} == 0 ? undef  # no negatives
          : $self->{'step'} <= 2 ? 6
          : $self->n_start + int($self->{'step'}/2) + 1);
}

sub sumxy_minimum {
  my ($self) = @_;
  return ($self->{'step'} == 0 ? 0 : undef);
}
sub sumabsxy_minimum {
  my ($self) = @_;
  # first point N=1 innermost ring
  my ($x,$y) = $self->n_to_xy($self->n_start);
  return $x;
}
*diffxy_minimum = \&sumxy_minimum;

# step=0 X=0,Y=0 AbsDiff=0
# step=3 N=88 X=Y=5.3579957587697 ring of 24 is a multiple of 8

sub rsquared_minimum {
  my ($self) = @_;
  my $step = $self->{'step'};
  if ($step <= 1) {
    # step=0 along X axis starting X=0,Y=0
    # step=1 start at origin
    return 0;
  }

  # step=3  *--___        
  # circle  |     --__         o         0.5/r = sin60 = sqrt(3)/2
  #         |   o   __*      / | \       r = 1/sqrt(3)
  #         |  ___--       /   |   \     r^2 = 1/3
  #         *--           *---------*
  #                              1/2
  # polygon
  #          o         0.5/r = sin60 = sqrt(3)/2
  #        / | \       r = 1/sqrt(3)                 
  #      /   |   \     r^2 = 1/3                
  #     *---------*                             
  #            1/2                              
  # 
  if ($step == 3) {
    return ($self->{'ring_shape'} eq 'polygon' ? 3/4 : 1/3);
  }
  if ($step == 4) {
    # radius = sqrt(2)/2, rsquared=1/2
    return 0.5;
  }

  # _numsides_to_r() returns 1, no need for a special case here
  # if ($step == 6) {
  #   # hexagon
  #   return 1;
  # }

  my $r;
  if ($step >= 6 || $self->{'ring_shape'} eq 'polygon') {
    $r = _numsides_to_r($step,_PI);
  } else {
    $r = $self->{'base_r'} + 1;
  }
  return $r*$r;
}


#------------------------------------------------------------------------------
# dx_minimum() etc

# step <= 6
# R=base_r+d
# theta = 2*$n * $pi / ($d * $step)
#       = 2pi/(d*step)
# dX -> R*sin(theta)
#    -> R*theta
#     = (base_r+d)*2pi/(d*step)
#    -> 2pi/step
#
# step=5 across first ring
# N=6 at X=base_r+2, Y=0
# N=5 at R=base_r+1 theta = 2pi/5
#   X=(base_r+1)*cos(theta)
#   dX = base_r+2 - (base_r+1)*cos(theta)
#
# step=6 across first ring
# base_r = 0.5/sin(_PI/6) - 1
#        = 0.5/0.5 - 1
#        = 0
# N=7 at X=base_r+2, Y=0
# N=6 at R=base_r+1 theta = 2pi/6
#   X=(base_r+1)*cos(theta)
#   dX = base_r+2 - (base_r+1)*cos(theta)
#      = base_r+2 - (base_r+1)*0.5
#      = 1.5*base_r + 1.5
#      = 1.5
#
# step > 6
# R = 0.5 / sin($pi / ($d*$step))
# diff = 0.5 / sin($pi / ($d*$step)) - 0.5 / sin($pi / (($d-1)*$step))
#     -> 0.5 / ($pi / ($d*$step)) - 0.5 / ($pi / (($d-1)*$step))
#      = 0.5 * ($d*$step) / $pi - 0.5 * (($d-1)*$step) / $pi
#      = step*0.5/pi * ($d - ($d-1))
#      = step*0.5/pi
# and extra from N=step to N=step+1
#     * (1-cos(2pi/step))
#
sub dx_minimum {
  my ($self) = @_;
  if ($self->{'step'} == 0) {
    return 1;   # horizontal only
  }

  if ($self->{'step'} > 6) {
    return -1; # supremum, unless polygon and step even
  }
  if ($self->{'ring_shape'} eq 'polygon') {
    # step=3,4,5
    return (-2*_PI()) / $self->{'step'};
  } else {
    return (-2*_PI()) / $self->{'step'};
  }
}

sub dx_maximum {
  my ($self) = @_;
  return ($self->{'step'} == 0
          ? 1   # horizontal only

          : $self->{'step'} == 5
          ? $self->{'base_r'}+2 - ($self->{'base_r'}+1)*cos(2*_PI()/5)

          : $self->{'step'} == 6
          ? 1.5

          : $self->{'step'} <= 6
          ? (2*_PI()) / $self->{'step'}

          # step > 6, between rings
          : (0.5/_PI()) * $self->{'step'}
          * (2-cos(2*_PI()/$self->{'step'})));
}

sub dy_minimum {
  my ($self) = @_;
  return ($self->{'step'} == 0    ? 0    # horizontal only
          : $self->{'step'} <= 6  ? (-2*_PI) / $self->{'step'}
          :                         -1); # supremum
}
sub dy_maximum {
  my ($self) = @_;
  return ($self->{'step'} == 0    ? 0    # horizontal only
          : $self->{'step'} <= 6  ? (2*_PI) / $self->{'step'}
          :                         1); # supremum
}
sub _UNDOCUMENTED__dxdy_list {
  my ($self) = @_;
  return ($self->{'step'} == 0 ? (1,0) # E only
          : ());  # unlimited
}

sub absdx_minimum {
  my ($self) = @_;
  my $step = $self->{'step'};
  if ($step == 0) {
    return 1;    # horizontal dX=1 always
  }
  if ($self->{'ring_shape'} eq 'polygon') {
    if ($step % 2) {
      return 0;  # polygons with odd num sides have left vertical dX=0
    } else {
      return sin(_PI/2 /$step);
    }

    # if ($self->{'step'} % 2 == 1) {
    #
    #   return 0;
    # } else {
    #   return abs($self->dx_minimum);
    # }
  }
  return 0;
}
sub absdy_minimum {
  my ($self) = @_;
  my $step = $self->{'step'};
  if ($step == 0) {
    return 0;    # horizontal dX=1 always
  }
  if ($self->{'ring_shape'} eq 'polygon') {
    if ($step == 3) {
      return 0.5;  # sin(30 degrees) innermost polygon
    }
    my $frac = ($step+2) % 4;
    if ($frac == 3) { $frac = 1; }
    return sin(_PI/2 * $frac/$step);
  }
  return 0;
}

sub dsumxy_minimum {
  my ($self) = @_;
  return ($self->{'step'} == 0
          ? 1    # horizontal only
          : -1); # infimum
}
use constant dsumxy_maximum => 1;

# FIXME: for step=1 is there a supremum at 9 or thereabouts?
# and for other step<6 too?
# 2*dXmax * sqrt(2) ?
sub ddiffxy_minimum {
  my ($self) = @_;
  return ($self->{'step'} == 0  ? 1     # horizontal only
          : $self->{'step'} <= 6 ? $self->dx_minimum * sqrt(2)
          : -1); # infimum
}
sub ddiffxy_maximum {
  my ($self) = @_;
  return ($self->{'step'} == 0   ? 1     # horizontal only
          : $self->{'step'} <= 6 ? $self->dx_maximum * sqrt(2)
          : 1); # supremum
}

#------------------------------------------------------------------------------
# dir_maximum_dxdy()

# polygon step many sides
#   start at vertical angle 1/4 plus 0.5/step, then k*1/step each side
#   a = 1/4 + (k+1/2)/step
#     = (1 + 4(k+1/2)/step) / 4
#     = ((4*k+2)/step + 1) / 4
#
# maximum want 1 > a >= 1-1/step
#   1/4 + (k+1/2)/step >= 1-1/step
#   (k+1/2)/step >= 3/4-1/step
#   k+1/2 >= 3*step/4-1
#   k >= 3*step/4-3/2
#   k >= (3*step-6)/4
#   k = ceil((3*step-6)/4)
#     = floor((3*step-6)/4 + 3/4)
#     = floor((3*step-3)/4)
# high side
#   1/4 + (k+1/2)/step < 1
#   (k+1/2)/step < 3/4
#   k+1/2 < 3*step/4
#   k < (3*step-2)/4
#   k = floor((3*step-2)/4 - 1/4)
#     = floor((3*step-3)/4)
#
# so
#   a = 1/4 + (floor((3*step-3)/4) + 1/2)/step
#     = (1 + 4*(floor((3*step-3)/4) + 1/2)/step) / 4
#     = ((floor((3*step-3)/4)*4 + 2)/step + 1) / 4
# step=4   a = 7/8
# step=5   a = 19/20
# step=6   a = 5/6
# step=7   a = 25/28
# step=8   a = 15/16
# step=10  a = 9/10
# return (int((3*$step-3)/4) * 4 + 2)/$step + 1;
# is full circle less 4,3,2,1 as step-2 mod 4
#
# sub dir4_maximum {
#   my ($self) = @_;
#   if ($self->{'step'} == 0) {
#     return 0;   # horizontal only
#   }
#   my $step = $self->{'step'};
#   if ($self->{'ring_shape'} eq 'polygon') {
#     return (($step-2)%4 - 4)/$step + 4;
#   }
#   return 4; # supremum, full circle
# }

# want a >= 1
# 1/4 + (k+1/2)/step >= 1
# (k+1/2)/step >= 3/4
# k+1/2 >= 3*step/4
# k >= 3*step/4 - 1/2
# k >= (3*step-2)/4
# k = ceil((3*step-2)/4)
#   = floor((3*step-2)/4 + 3/4)
#   = floor((3*step+1)/4)
# min_a = 1/4 + (floor((3*step+1)/4) + 1/2)/step - 1
#       = (1 + 4*(floor((3*step+1)/4) + 1/2)/step ) / 4
#       = ((4*floor((3*step+1)/4) + 2)/step + 1) / 4 - 1
#       = ((floor((3*step+1)/4)*4 + 2)/step - 3) / 4
# return (int((3*$step+1)/4) * 4 + 2)/$step - 3;
# is 0,1,2,3 as step-2 mod 4
# return (($step-2) % 4) / $step;
#
# but last of ring across to first of next may be shallower
#
# sub dir4_minimum {
#   my ($self) = @_;
#   my $step = $self->{'step'};
#   if ($self->{'ring_shape'} eq 'polygon') {
#     if ($step % 4 != 2) {   # polygon step=2mod4 includes horizontal ...
#       my ($dx,$dy) = $self->n_to_dxdy($self->{'step'});
#       return min (atan2($dy,$dx) * (2/_PI),
#                   (($step-2) % 4) / $step);
#     }
#
#   }
#   return 0; # horizontal
# }

sub dir_minimum_dxdy {
  my ($self) = @_;
  my $step = $self->{'step'};
  if ($self->{'ring_shape'} eq 'polygon') {
    return $self->n_to_dxdy($step == 9
                            ? 9
                            : int((3*$step+5)/4));
  }
  return (1,0); # horizontal
}
sub dir_maximum_dxdy {
  my ($self) = @_;
  if ($self->{'step'} == 0) {
    return (1,0);   # step=0 horizontal always
  }

  if ($self->{'ring_shape'} eq 'polygon') {
    my $step = $self->{'step'};
    return $self->n_to_dxdy(int((3*$step+1)/4));  # 1 before the minimum

    # # just before 3/4 way around, then half back ....
    # # sides   side
    # # -----   ----
    # #   3      1
    # #   4      2
    # #   5      3
    # #   6      3
    # #   7      4
    # #   8      5
    # #   9      6
    # #  10      6
    # return _circlefrac_to_xy (1, int((3*$step-3)/4), $step, _PI);
  }

  return (0,0); # supremum, full circle
}

#------------------------------------------------------------------------------

sub new {
  ### MultipleRings new() ...
  my $self = shift->SUPER::new(@_);

  my $step = $self->{'step'};
  $step = $self->{'step'} = (! defined $step ? 6  # default
                             : $step < 0     ? 0  # minimum
                             : $step);
  ### $step

  my $ring_shape = ($self->{'ring_shape'} ||= 'circle');
  if (! ($ring_shape eq 'circle' || $ring_shape eq 'polygon')) {
    croak "Unrecognised ring_shape option: ", $ring_shape;
  }
  if ($step < 3) {
    # polygon shape only for step >= 3
    $ring_shape = $self->{'ring_shape'} = 'circle';
  }

  if ($ring_shape eq 'polygon') {
    ### polygon ...
    if ($step == 6) {
      ### 0.5/sin(PI/6)=1 exactly ...
      $self->{'base_r'} = 1;
    } elsif ($step == 3) {
      ### 0.5/sin(PI/3)=sqrt(3)/3 ...
      $self->{'base_r'} = sqrt(3)/3;
    } else {
      $self->{'base_r'} = 0.5/sin(_PI/$step);
    }

  } elsif ($step == 6) {
    ### 0.5/sin(PI/6) = 1 exactly ...
    $self->{'base_r'} = 0;

  } elsif ($step == 4) {
    ### 0.5/sin(PI/4) = sqrt(2)/2 ...
    $self->{'base_r'} = sqrt(2)/2 - 1;

  } elsif ($step == 3) {
    ### 0.5/sin(PI/3) = sqrt(3)/3 ...
    $self->{'base_r'} = sqrt(3)/3 - 1;

  } elsif ($step < 6) {
    ### sin: $step>1 && sin(_PI/$step)
    $self->{'base_r'} = ($step > 1 && 0.5/sin(_PI/$step)) - 1;
  }
  ### base r: $self->{'base_r'}

  return $self;
}

# with N decremented
# d = [ 1, 2, 3, 4,  5 ]
# N = [ 0, 1, 3, 6, 10 ]
#
# N = (1/2 d^2 - 1/2 d)
#   = (1/2*$d**2 - 1/2*$d)
#   = ((0.5*$d - 0.5)*$d)
#   = 0.5*$d*($d-1)
#
# d = 1/2 + sqrt(2 * $n + 1/4)
#   = 0.5 + sqrt(2*$n + 0.25)
#   = [ 1 + 2*sqrt(2n + 1/4) ] / 2
#   = [ 1 + sqrt(8n + 1) ] / 2
#
# (d+1)d/2 - d(d-1)/2
#     = [ (d^2 + d) - (d^2-d) ] / 2
#     = [ d^2 + d - d^2 + d ] / 2
#     = 2d/2 = d
#
# radius
#    step > 6     1 / (2 * sin(pi / ($d*$step))
#    step <= 6    Rbase + d
#
# usual polygon formula R = a / 2*sin(pi/n)
# cf inner radius  r = a / 2*tan(pi/n)
# along chord
#
# polygon horizontal when a=1
#   1/4 + (k+1/2)/step = 1
#   (k+1/2)/step = 3/4
#   k+1/2 = 3*step/4
#   k = 3*step/4 - 1/2
#   k = ()/4
#   4*k = 3*step-2
# and when a=1/2
#   1/4 + (k+1/2)/step = 1/2
#   (k+1/2)/step = 1/4
#   k+1/2 = step/4
#   4*k+2 = step

# 1/2 / R = sin(2pi/sides)
# 1/2 / (R^2 - 1/4) = tan(2pi/sides)
# f(x) = 1/2 / R - sin(2pi/sides)     = $f
# f'(x) = -1/2 / R^2 - cos(2pi/sides) = $slope
# $r-$f/$slope better approx
# (1/2 / R - sin(2pi/sides)) / (-1/2 / R^2 - cos(2pi/sides))
#   = (R/2 - R^2 sin(2pi/sides)) / (-1/2 - R^2 * cos(2pi/sides))

sub n_to_xy {
  my ($self, $n) = @_;
  ### MultipleRings n_to_xy(): "n=$n  step=$self->{'step'} shape=$self->{'ring_shape'}"

  # "$n<1" separate test from decrement so as to warn on undef
  # don't have anything sensible for infinity, and _PI / infinity would
  # throw a div by zero
  if ($n < 1) { return; }
  if (is_infinite($n)) { return ($n,$n); }
  $n -= 1;

  ### decremented n: $n
  my $step = $self->{'step'};
  if (! $step) {
    ### step==0 goes along X axis ...
    return ($n, 0);
  }

  my $d = int((sqrt(int(8*$n/$step) + 1) + 1) / 2);

  ### d frac: (sqrt(int(8*$n) + 1) + 1) / 2
  ### d int: "$d"
  ### base: ($d*($d-1)/2).''
  ### next base: (($d+1)*$d/2).''
  ### assert: $n >= ($d*($d-1)/2)
  ### assert: $n < ($step * ($d+1) * $d / 2)

  $n -= $d*($d-1)/2 * $step;
  ### n remainder: "$n"
  ### assert: $n >= 0
  ### assert: $n < $d*$step

  my $zero = $n * 0;
  if (ref $n) {
    if ($n->isa('Math::BigInt')) {
      $n = Math::PlanePath::SacksSpiral::_bigfloat()->new($n);
    } elsif ($n->isa('Math::BigRat')) {
      $n = $n->as_float;
    }
    if ($n->isa('Math::BigFloat')) {
      ### bigfloat ...
      $d = Math::BigFloat->new($d);
    }
  }
  my $pi = _pi($n);
  ### $pi

  # my $base_r = $self->{'base_r'};
  #     $base_r = Math::BigFloat->new($base_r);

  {
    my $numsides;
    my $r;
    if ($self->{'ring_shape'} eq 'circle')  {
      ### circle ...
      $numsides = $d * $step;
      if ($step > 6) {
        $r = 0.5 / sin($pi / $numsides);
      } else {
        my $base_r;
        if ($step == 6) {
          $base_r = 0; # exactly
        } elsif ($step == 4) {
          ### 0.5/sin(PI/4)=sqrt(2)/2 ...
          $base_r = sqrt(0.5 + $zero) - 1;  # sqrt() instead of sin()
        } elsif ($step == 3) {
          ### 0.5/sin(PI/3)=sqrt(3)/3 ...
          $base_r = sqrt(3 + $zero)/3 - 1;  # sqrt() instead of sin()
        } elsif ($step == 1) {
          $base_r = -1;             # so initial d=1 at $r=0
        } else {
          $base_r = 0.5/sin($pi/$step) - 1;
        }
        $r = $base_r + $d;
      }
    } else {
      ### polygon ...
      $numsides = $step;
      my $base_r = _numsides_to_r($step,$pi);
      if ($step > 6) {
        $r = $base_r*$d;
      } else {
        $r = $base_r + ($d-1)/cos($pi/$step);
      }
      $n /= $d;
    }
    ### n with frac: $n

    # numsides even N > numsides/2
    # numsides odd  N >= (numsides+1)/2 = ceil(numsides/2)
    my $y_neg;
    if (2*$n >= $numsides) {
      $n = $numsides - $n;
      $y_neg = 1;
    }

    my $x_neg;
    my $xy_transpose;
    if ($numsides % 2 == 0) {
      if (4*$n >= $numsides) {
        $n = $numsides/2 - $n;
        $x_neg = 1;
      }
      if ($numsides % 4 == 0 && 8*$n >= $numsides) {
        $n = $numsides/4 - $n;
        $xy_transpose = 1;
      }
    }

    my $side = int ($n);
    $n -= $side;

    my ($x, $y) = _circlefrac_to_xy($r, $side, $numsides, $pi);

    if ($n) {
      # fractional $n offset into side

      my ($to_x, $to_y);
      $side += 1;
      if (2*$side == $numsides+1) {
        # vertical at left, so X unchanged Y negate
        $to_x = $x;
        $to_y = - $y;

      } elsif (4*$side == $numsides+2 || 4*$side == 3*$numsides-2) {
        # horizontal at top or bottom, so Y unchanged X negate
        $to_x = - $x;
        $to_y = $y;

      } else {
        ($to_x, $to_y) = _circlefrac_to_xy($r, $side, $numsides, $pi);
      }

      ### $side
      ### $r
      ### from: "$x, $y"
      ### to: "$to_x, $to_y"

      # If vertical or horizontal then don't apply the proportions since the
      # two parts $x*$n and $to_x*(1-$n) can round off giving the sum != to
      # the original $x.
      if ($to_x != $x) {
        $x = $x*(1-$n) + $to_x*$n;
      }
      if ($to_y != $y) {
        $y = $y*(1-$n) + $to_y*$n;
      }
    }

    if ($xy_transpose) {
      ($x,$y) = ($y,$x);
    }
    if ($x_neg) {
      $x = -$x;
    }
    if ($y_neg) {
      $y = -$y;
    }

    ### final: "x=$x y=$y"
    return ($x, $y);
  }

  # {
  #   # && $d != 0 # watch out for overflow making d==0 ??
  #   #
  #   my $d_step = $d*$step;
  #   my $r = ($step > 6
  #            ? 0.5 / sin($pi / $d_step)
  #            : $base_r + $d);
  #   ### r: "$r"
  #
  #   my $n2 = 2*$n;
  #
  #   if ($n2 == int($n2)) {
  #     if (($n2 % $d_step) == 0) {
  #       ### theta=0 or theta=pi, exactly on X axis ...
  #       return ($n ? -$r : $r,  # n remainder 0 means +ve X axis, non-zero -ve
  #               0);
  #     }
  #     if (($d_step % 2) == 0) {
  #       my $n2sub = $n2 - $d_step/2;
  #       if (($n2sub % $d_step) == 0) {
  #         ### theta=pi/2 or theta=3pi/2, exactly on Y axis ...
  #         return (0,
  #                 $n2sub ? -$r : $r);
  #       }
  #     }
  #   }
  #
  #   my $theta = $n2 * $pi / $d_step;
  #
  #   ### theta frac: (($n - $d*($d-1)/2)/$d).''
  #   ### theta: "$theta"
  #
  #   return ($r * cos($theta),
  #           $r * sin($theta));
  # }
}

# $side is 0 to $numsides-1
sub _circlefrac_to_xy {
  my ($r, $side, $numsides, $pi) = @_;
  ### _circlefrac_to_xy(): "r=$r side=$side numsides=$numsides pi=$pi"

  if (2*$side == $numsides) {
    ### 180-degrees, so X=R, Y=0 ...
    return (-$r, 0);

  }
  if (4*$side == $numsides) {
    ### 90-degrees, so X=0, Y=R ...
    return (0, $r);
  }
  if (6*$side == $numsides) {
    ### 60-degrees, so X=R/2, Y=sqrt(3)/2*R ...
    return ($r / 2,
            $r * sqrt(3 + $r*0) / 2);
  }
  if (8*$side == $numsides) {
    ### 45-degrees, so X=Y=R/sqrt(2) ...
    my $x = $r / sqrt(2 + $r*0);
    return ($x, $x);
  }

  # my $two_pi = (ref $r && $r->isa('Math::BigFloat')
  #               ? 2*Math::BigFloat->bpi;
  #               : 2*_PI);
  #
  # if (2*$side == $numsides+1) {
  #   ### first below X axis ...
  #   my $theta = 2*$pi * ($side-1)/$numsides;
  #   return ($r * cos($theta),
  #           - $r * sin($theta));
  # }
  # if (4*$side == $numsides+1) {
  #   ### first past Y axis ...
  #   my $theta = 2*$pi * ($side-1)/$numsides;
  #   return (- $r * cos($theta),
  #           $r * sin($theta));
  # }

  my $theta = 2 * $pi * $side/$numsides;
  return ($r * cos($theta),
          $r * sin($theta));
}

# my $numsides = $step;
# if ($self->{'ring_shape'} eq 'polygon') {
#   $n /= $d;
#   my $base_r = _numsides_to_r($step,$pi);
#   if ($step > 6) {
#     $r = $base_r*$d;
#   } else {
#     $r = $base_r + ($d-1)/cos($pi/$step);
#   }
# } else {
#   $numsides *= $d;
#   if ($step > 6) {
#     $r = _numsides_to_r($numsides,$pi);
#   } else {
#     $r = _numsides_to_r($step,$pi) + $d;
#   }
# }
# my $side = int($n);
# $n -= $side;

sub _numsides_to_r {
  my ($numsides, $pi) = @_;
  if ($numsides == 3) { return sqrt(0.75 + $pi*0); }
  if ($numsides == 4) { return sqrt(0.5 + $pi*0); }
  if ($numsides == 6) { return 1 + $pi*0; }
  return 0.5 / sin($pi/$numsides);
}


# for step=4
#   R   = sqrt(2)/2 + d
#   R^2 = (sqrt(2)/2 + d)^2
#       = 2/4 + 2*sqrt(2)/2*d + d^2
#       = 1/2 + d*sqrt(2) + d^2
#   not an integer
#
sub n_to_rsquared {
  my ($self, $n) = @_;
  ### MultipleRings n_to_rsquared(): "n=$n"
  if ($n < 1) { return undef; }
  if (is_infinite($n)) { return $n; }

  if (defined (my $r = _n_to_radius_exact($self,$n))) {
    return $r*$r;
  }
  if ($self->{'step'} == 1) {
    # $n < 4 covered by _n_to_radius_exact()

    if ($n >= 4 && $n < 7) {
      # triangle numsides=3
      #   N=4 at X=2, Y=0
      #   N=5 at X=-1, Y=sqrt(3)
      #   N=4+f at X=2-3*f Y=f*sqrt(3)
      #     R^2 = (2-3f)^2 + 3*f^2
      #         = 4-12f+9*f^2 + 3*f^2
      #         = 4-12f+12*f^2
      #         = 4*(1 - 3f + 3*f^2)
      #         = 4 - 6*(2*f) + 3*(2*f)^2
      #     f=1/2 is R^2 = 1
      #   N=5+f at X=-1 Y = sqrt(3)*(1-2*f)
      #     R^2 = 1 + 3*(1-2*f)^2
      #         = 1 + 3 - 3*4*f + 3*4*f^2
      #         = 4 - 12*f + 12*f^2
      #         = 4 - 12*(f - f^2)
      #         = 4 - 12*f*(1 - f)

      $n -= int($n);
      return 4 - 12*$n*(1-$n);
    }

    if ($n >= 7 && $n < 11) {
      ### square numsides=4 ...
      # X=3-3*f Y=3*f
      # R^2 = (3-3*f)^2 + (3*f)^2
      #     = 9*[ (1-f)^2 + f^2) ]
      #     = 9*[ 1 - 2f + f^2 + f^2) ]
      #     = 9*[ 1 - 2f + 2f^2 ]
      #     = 9*[ 1 - 2(f - f^2) ]
      #     = 9 - 18*f*(1 - f)
      # eg f=1/2 R^2 = (sqrt(2)/2*3)^2 = 2/4*9 = 9/2

      $n -= int($n);
      return 9 - 18*$n*(1-$n);
    }

    if ($n >= 16 && $n < 22) {
      ### hexagon numsides=6 ...
      # X=5 Y=0  to X=5*1/2 Y=5*sqrt(3)/2
      # R^2 = (5 - 5/2*f)^2 + (5*sqrt(3)/2*f)^2
      #     = 25 - 25*f + 25*f^2
      #     = 25 - 25*f*(1-f)
      # eg f=1/2 R^2 = 18.75
      # or f=1/5 R^2 = 21 exactly, though 1/5 not exact in binary floats

      $n -= int($n);
      return 25 - 25*$n*(1-$n);
    }

    # other numsides don't have sin(pi/numsides) an integer or sqrt so
    # aren't an exact R^2
  }

  # ENHANCE-ME: step=1 various exact values for ring of 4 and ring of 6

  return $self->SUPER::n_to_rsquared($n);
}
sub n_to_radius {
  my ($self, $n) = @_;
  ### n_to_radius(): $n

  if ($n < 1) { return undef; }
  if (is_infinite($n)) { return $n; }

  if (defined (my $r = _n_to_radius_exact($self,$n))) {
    return $r;
  }
  return sqrt($self->n_to_rsquared($n));
  # return $self->SUPER::n_to_radius($n);
}

# step=6 shape=polygon exact integer for some of second ring too
# sub n_to_trsquared {
#   my ($self, $n) = @_;
#   ### MultipleRings n_to_rsquared(): "n=$n"
# }

sub _n_to_radius_exact {
  my ($self, $n) = @_;
  ### _n_to_radius_exact(): "n=$n step=$self->{'step'}"

  if ($n < 1) { return undef; }
  if (is_infinite($n)) { return $n; }

  my $step = $self->{'step'};
  if ($step == 0) {
    return $n - 1;    # step=0 goes along X axis starting X=0,Y=0
  }

  if ($step == 1) {
    if ($n < 4) {
      if ($n < 2) {
        return 0;  # 0,0 only, no jump across to next ring
      }
      $n -= int($n);
      return abs(1-2*$n);
    }
    if ($n == int($n)) {
      ### step=1 radius=integer steps for integer N ...
      return _n0_to_d($self,$n-1) - 1;
    }
    my $two_n = 2*$n;
    if ($two_n == 9 || $two_n == 11 || $two_n == 13) {
      #  N=4.5 at X=1/2 Y=sqrt(3)/2  R^2 = 1/4 + 3/4 = 1 exactly
      #  N=5.5 at X=-1, Y=0 so R^2 = 1 exactly
      #  N=6.5 same as N=4.5
      return 1;
    }

  } elsif ($step == 6) {
    if ($n == int($n)) {
      # step=6 circle all integer N has exact integer radius
      # step=6 polygon only innermost ring N<=6 exact integer radius
      if ($self->{'ring_shape'} eq 'circle'
          || $n <= 6) {   # ring_shape=polygon
        return _n0_to_d($self,$n-1);
      }
    }
  }

  ### no exact radius ...
  return undef;
}
sub _n0_to_d {
  my ($self, $n) = @_;
  return int((sqrt(int(8*$n/$self->{'step'}) + 1) + 1) / 2);
}
sub _d_to_n0base {
  my ($self, $d) = @_;
  return $d*($d-1)/2 * $self->{'step'};
}

# From above
#     r = 0.5 / sin(pi/(d*step))
#
#     sin(pi/(d*step)) = 0.5/r
#     pi/(d*step) = asin(1/(2*r))
#     1/d * pi/step = asin(1/(2*r))
#     d = pi/(step*asin(1/(2*r)))
#
# r1 = 0.5 / sin(pi/(d*step))
# r2 = 0.5 / sin(pi/((d+1)*step))
# r2 - r1 = 0.5 / sin(pi/(d*step)) - 0.5 / sin(pi/((d+1)*step))
# r2-r1 >= 1 when step>=7 ?

sub _xy_to_d {
  my ($self, $x, $y) = @_;
  ### _xy_to_d(): "x=$x y=$y"

  my $r = hypot ($x, $y);
  if ($r < 0.5) {
    ### r smaller than 0.5 ring, treat as d=1
    # 1/(2*r) could be div-by-zero
    # or 1/(2*r) > 1 would be asin()==-nan
    return 1;
  }
  my $two_r = 2*$r;
  if (is_infinite($two_r)) {
    ### 1/inf is a divide by zero, avoid that ...
    return $two_r;
  }
  ### $r

  my $step = $self->{'step'};
  if ($self->{'ring_shape'} eq 'polygon') {
    my $theta_frac = _xy_to_angle_frac($x,$y);
    $theta_frac -= int($theta_frac*$step) / $step;  # modulo 1/step

    my $r = hypot ($x, $y);
    my $alpha = 2*_PI/$step;
    my $theta = 2*_PI * $theta_frac;
    ### $r
    ### x=r*cos(theta): $r*cos($theta)
    ### y=r*sin(theta): $r*sin($theta)

    my $p = $r*cos($theta) + $r*sin($theta) * sin($alpha/2)/cos($alpha/2);
    ### $p
    ### base_r: $self->{'base_r'}
    ### p - base_r: $p - $self->{'base_r'}

    if ($step >= 6) {
      return $p / $self->{'base_r'};
    } else {
      return ($p - $self->{'base_r'}) * cos(_PI/$step) + 1;
    }
  }

  if ($step > 6) {
    ### d frac by asin: _PI / ($step * asin(1/$two_r))
    return _PI / ($step * asin(1/$two_r));
  } else {
    # $step <= 6
    ### d frac by base: $r - $self->{'base_r'}
    return $r - $self->{'base_r'};
  }
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### MultipleRings xy_to_n(): "$x, $y  step=$self->{'step'}  shape=$self->{'ring_shape'}"

  my $n;
  my $step = $self->{'step'};
  if ($step == 0) {
    # step==0
    $n = int ($x + 1.5);

  } else {
    my $theta_frac = _xy_to_angle_frac($x,$y);
    ### $theta_frac
    ### assert: (0 <= $theta_frac && $theta_frac < 1)  || $theta_frac!=$theta_frac

    my $d;
    if ($self->{'ring_shape'} eq 'polygon') {
      $n = int($theta_frac*$step);
      $theta_frac -= $n/$step;
      ### theta modulo 1/step: $theta_frac
      ### $n

      my $r = hypot ($x, $y);
      my $alpha = 2*_PI/$step;
      my $theta = 2*_PI * $theta_frac;
      ### $r
      ### so x=r*cos(theta): $r*cos($theta)
      ### so y=r*sin(theta): $r*sin($theta)

      my $pi = _PI;
      my $p = $r*cos($theta) + $r*sin($theta) * sin($alpha/2)/cos($alpha/2);
      my $base_r = Math::PlanePath::MultipleRings::_numsides_to_r($step,$pi);
      ### $p
      ### $base_r

      if ($step > 6) {
        $d = $p / $base_r;
      } else {
        $d = ($p - $base_r) * cos($pi/$step) + 1;
      }
      ### d frac: $d
      $d = int($d+0.5);
      ### $d
      ### cf _xy_to_d(): _xy_to_d($self,$x,$y)

      my $f = ($p == 0 ? 0 : $r*sin($theta) / ($p*sin($alpha)));
      $n = int(($n+$f)*$d + 0.5);

      ### e: $r*sin($theta) * sin($alpha/2)/cos($alpha/2)
      ### $f
      ### $n

    } else {
      $d = int(_xy_to_d($self,$x,$y) + 0.5);
      ### $d
      $n = int (0.5 + $theta_frac * $d*$step);
      if ($n >= $d*$step) { $n = 0; }
    }

    ### n within ring: $n
    ### n ring start: _d_to_n0base($self,$d) + 1

    $n += _d_to_n0base($self,$d) + 1;
    ### $d
    ### d base: 0.5*$d*($d-1)
    ### d base M: $step * 0.5*$d*($d-1)
    ### $theta_frac
    ### theta offset: $theta_frac*$d
    ### $n
  }

  ### trial n: $n
  if (my ($nx, $ny) = $self->n_to_xy($n)) {
    ### nxy: "nx=$nx ny=$ny  hypot=".hypot($x-$nx,$y-$ny)
    ### cf orig xy: "x=$x y=$y"
    if (hypot($x-$nx, $y-$ny) <= 0.5) {
      return $n;
    }
  }
  return undef;
}

# ENHANCE-ME: step>=3 small rectangles around 0,0 don't cover any pixels
#
# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### MultipleRings rect_to_n_range(): "$x1,$y1, $x2,$y2  step=$self->{'step'}"

  my $zero = ($x1<0) != ($x2<0) || ($y1<0) != ($y2<0);
  my $step = $self->{'step'};

  my ($r_lo, $r_hi) = Math::PlanePath::SacksSpiral::_rect_to_radius_range
    ($x1,$y1, $x2,$y2);
  ### $r_lo
  ### $r_hi
  if (is_infinite($r_hi)) {
    return (1,$r_hi);
  }
  if ($r_hi < 1) { $r_hi = 1; }
  if ($self->{'ring_shape'} eq 'polygon') {
    $r_hi /= cos(_PI/$self->{'step'});
    ### poly increase r_hi: $r_hi
  }

  my ($d_lo, $d_hi);
  if ($self->{'ring_shape'} eq 'polygon') {
    if ($step >= 6) {
      $d_lo = $r_lo / $self->{'base_r'};
      $d_hi = $r_hi / $self->{'base_r'};
    } else {
      $d_lo = ($r_lo - $self->{'base_r'}) * cos(_PI/$step) + 1;
      $d_hi = ($r_hi - $self->{'base_r'}) * cos(_PI/$step) + 1;
    }
  } else {
    if ($step > 6) {
      $d_lo = ($r_lo > 0
               ? _PI / ($step * asin(0.5/$r_lo))
               : 0);
      $d_hi = _PI / ($step * asin(0.5/$r_hi));
    } else {
      $d_lo = $r_lo - $self->{'base_r'};
      $d_hi = $r_hi - $self->{'base_r'};
    }
  }
  ### $d_lo
  ### $d_hi

  $d_lo = int($d_lo - 1);
  $d_hi = int($d_hi + 2);
  if ($d_lo < 1) { $d_lo = 1; }

  if ($step) {
    # start of ring is N= 0.5*$d*($d-1) * $step + 1
    ### n_lo: 0.5*$d_lo*($d_lo-1) * $step + 1
    ### n_hi: 0.5*$d_hi*($d_hi+1) * $step
    return ($d_lo*($d_lo-1)/2 * $step + 1,
            $d_hi*($d_hi+1)/2 * $step);
  } else {
    # $step == 0
    return ($d_lo, $d_hi);
  }





  # # if x1,x2 pos and neg then 0 is covered and it's the minimum
  # # ENHANCE-ME: might be able to be a little tighter on $d_lo
  # my $d_lo = ($zero
  #             ? 1
  #             : max (1, -2 + int (_xy_to_d ($self,
  #                                           min($x1,$x2),
  #                                           min($y1,$y2)))));
  # my $d_hi = 1 + int (_xy_to_d ($self,
  #                               max($x1,$x2),
  #                               max($y1,$y2)));
  # ### $d_lo
  # ### $d_hi
  # if ((my $step = $self->{'step'})) {
  #   # start of ring is N= 0.5*$d*($d-1) * $step + 1
  #   ### n_lo: 0.5*$d_lo*($d_lo-1) * $step + 1
  #   ### n_hi: 0.5*$d_hi*($d_hi+1) * $step
  #   return ($d_lo*($d_lo-1)/2 * $step + 1,
  #           $d_hi*($d_hi+1)/2 * $step);
  # } else {
  #   # $step == 0
  #   return ($d_lo, $d_hi);
  # }
}

#------------------------------------------------------------------------------
# generic

# _xy_to_angle_frac() returns the angle of X,Y as a fraction 0 <= angle < 1
# measured anti-clockwise around from the X axis.
#
sub _xy_to_angle_frac {
  my ($x, $y) = @_;

  # perlfunc.pod warns atan2(0,0) is implementation dependent.  The C99 spec
  # is atan2(+/-0, -0) returns +/-pi, both of which would come out 0.5 here.
  # Prefer 0 for any +/-0,+/-0.
  if ($x == 0 && $y == 0) {
    return 0;
  }

  my $frac = atan2($y,$x) * (0.5 / _PI);
  ### $frac
  if ($frac < 0) { $frac += 1; }
  elsif ($frac >= 1) { $frac -= 1; }
  return $frac;
}

# return pi=3.14159 etc, inheriting precision etc from $n if it's a BigFloat
# or other overload
sub _pi {
  my ($n) = @_;
  if (ref $n) {
    if ($n->isa('Math::BigFloat')) {
      my $digits;
      if (defined($digits = $n->accuracy)) {
        ### n accuracy ...
      } elsif (defined($digits = $n->precision)) {
        ### n precision ...
        $digits = -$digits + 1;
      } elsif (defined($digits = Math::BigFloat->accuracy)) {
        ### global accuracy ...
      } elsif (defined($digits = Math::BigFloat->precision)) {
        ### global precision ...
        $digits = -$digits + 1;
      } else {
        ### div_scale ...
        $digits = Math::BigFloat->div_scale+1;
      }
      ### $digits
      $digits = max (1, $digits);
      return Math::BigFloat->bpi($digits);
    }
    ### other overload n class: ref $n
    my $zero = $n * 0;
    return 2*atan2($zero,1+$zero);
  }
  return _PI;
}

1;
__END__

=for stopwords Ryde Math-PlanePath Pentagonals Nring ie OEIS spacings numsides Nrem pronic pronics RSquared

=head1 NAME

Math::PlanePath::MultipleRings -- rings of multiples

=head1 SYNOPSIS

 use Math::PlanePath::MultipleRings;
 my $path = Math::PlanePath::MultipleRings->new (step => 6);
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path puts points on concentric rings.  Each ring has "step" many points
more than the previous and the first is also "step".  For example with the
default step==6,

                24  23                    innermost ring  6
             25        22                 next ring      12
                  10                      next ring      18
          26   11     9  21  ...                    ringnum*step

        27  12   3  2   8  20  38

       28  13   4    1   7  19  37        <- Y=0

        29  14   5  6  18  36

          30   15    17  35
                  16
             31        24
                32  33

                  ^
                 X=0

X,Y positions are not integers, except on the axes.  The innermost ring like
N=1to6 above has points 1 unit apart.  Subsequent rings are a unit chord or
unit radial, whichever ensures no overlap.

      step <= 6      unit spacing radially
      step >= 6      unit chords around the rings

For step=6 the two spacings are the same.  Unit radial spacing ensures the X
axis points N=1,7,19,37,etc shown above are 1 unit apart.  Unit chord
spacing ensures adjacent points such as N=7,8,0,etc don't overlap.

The layout is similar to the various spiral paths of corresponding step.
For example step=6 is like the C<HexSpiral>, but rounded out to circles
instead of a hexagonal grid.  Similarly step=4 the C<DiamondSpiral> or
step=8 the C<SquareSpiral>.

The step parameter is also similar to the C<PyramidRows> with the rows
stretched around circles, but C<PyramidRows> starts from a 1-wide initial
row whereas for C<MultipleRings> here the first is "step" many.

=head2 X Axis

The starting Nring=1,7,19,37 etc on the X axis for the default step=6 is
S<6*d*(d-1)/2 + 1>, counting the innermost ring as d=1.  In general Nring is
a multiple of the X<Triangular numbers>triangular numbers d*(d-1)/2, plus 1,

    Nring = step*d*(d-1)/2 + 1

X<Centred polygonal numbers>This is the centred polygonal numbers, being the
cumulative count of points making concentric polygons or rings in the style
of this path.

Straight line radials further around arise from adding multiples of d, so
for example in step=6 shown above the line N=3,11,25,etc is S<Nring + 2*d>.
Multiples k*d with kE<gt>=step give lines which are in between the base ones
from the innermost ring.

=head2 Step 1

For step=1 the first ring is 1 point and each subsequent ring has 1 further
point.

=cut

# math-image --path=MultipleRings,step=1 --expression='i<29?i:0' --output=numbers --size=80x25

=pod

                24
                               23
             18       12    17
    25              8
          13     5

    19     9     3  1  2  4  7 11 16 22     <- Y=0

          14     6
    26             10
             20       15    21
                               28
                27

                    ^
     -5 -4 -3 -2-1 X=0 1  2  3  4  5  6

The rings are

    polygon        radius     N values
    ------------   ------     --------
    single point     0         1
    two points       1         2, 3
    triangle         2         4, 5, 6
    square           3         7, 8, 9,10
    pentagon         4        11,12,13,14,15
    hexagon          5        16,17,18,19,20,21
     etc

The X axis as described above is the triangular numbers plus 1,
ie. S<k*(k+1)/2 + 1>.

=head2 Step 2

For step=2 the arrangement is roughly

=cut

# math-image --path=MultipleRings,step=2 --expression='i<43?i:0' --output=numbers --size=80x25

=pod

                   34
          35                33
                24 15 23
    36 25                      22 32
             16  9  4  8 14

    37 26 17 10  5  2  1  3  7 13 21 31

             18 11  6 12 20
    38 27                      30 42
                28 19 29
          39                41
                   40

The pattern is similar to the C<SacksSpiral> (see
L<Math::PlanePath::SacksSpiral>).  In C<SacksSpiral> each spiral loop is 2
more points than the previous the same as here, but the positioning differs.
Here the X axis is the pronic numbers and the squares are to the left,
whereas in C<SacksSpiral> rotated around to squares on X axis and pronics to
the left.

=head2 Ring Shape

Option C<ring_shape =E<gt> 'polygon'> puts the points on concentric polygons
of "step" many sides, so each concentric polygon has 1 more point on each of
its sides than the previous polygon.  For example step=4 gives 4-sided
polygons, ie. diamonds,

    ring_shape=>'polygon', step=>4

                  16
                /    \
             17    7   15
           /    /     \   \
        18    8    2    6   14
      /     /   /    \    \    \
    19   9    3         1    5   13
      \     \   \    /    /    /
        20   10    4   12   24
           \    \    /    /
             21   11   23
                \    /
                  22

The polygons are scaled to keep points 1 unit apart.  For stepE<gt>=6 this
means 1 unit apart sideways.  step=6 is in fact a honeycomb grid where each
points is 1 away from all six of its neighbours.

For step=3, 4 and 5 the polygon sides are 1 apart radially, as measured in
the centre of each side.  This makes points a little more than 1 apart along
the sides.  Squeezing them up to make the closest points exactly 1 apart is
possible, but may require iterating a square root for each ring.  step=3
squeezed down would in fact become a variable spacing with successively four
close then one wider.

For step=2 and step=1 in the current code the default circle shape is used.
Should that change?  Is there a polygon style with 2 sides or 1 side?

The polygon layout is only a little different from a circle, but it lines up
points on the sides and that might help show a structure for some sets of
points plotted on the path.

=head2 Step 3 Pentagonals

For step=3 the pentagonal numbers 1,5,12,22,etc, P(k) = (3k-1)*k/2, are a
radial going up to the left, and the second pentagonal numbers 2,7,15,26,
S(k) = (3k+1)*k/2 are a radial going down to the left, respectively 1/3 and
2/3 the way around the circles.

As described in L<Math::PlanePath::PyramidRows/Step 3 Pentagonals>, those
P(k) and preceding P(k)-1, P(k)-2, and S(k) and preceding S(k)-1, S(k)-2 are
all composites, so plotting the primes on a step=3 C<MultipleRings> has two
radial gaps where there's no primes.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::MultipleRings-E<gt>new (step =E<gt> $integer)>

=item C<$path = Math::PlanePath::MultipleRings-E<gt>new (step =E<gt> $integer, ring_shape =E<gt> $str)>

Create and return a new path object.

The C<step> parameter controls how many points are added in each circle.  It
defaults to 6 which is an arbitrary choice and the suggestion is to always
pass in a desired count.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.

C<$n> can be any value C<$n E<gt>= 1> and fractions give positions on the
rings in between the integer points.  For C<$n < 1> the return is an empty
list since points begin at 1.

Fractional C<$n> currently ends up on the circle arc between the integer
points.  Would straight line chords between them be better, reflecting the
unit spacing of the points?  Neither seems particularly important.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return an integer point number for coordinates C<$x,$y>.  Each integer N
is considered the centre of a circle of diameter 1 and an C<$x,$y> within
that circle returns N.

The unit spacing of the points means those circles don't overlap, but they
also don't cover the plane and if C<$x,$y> is not within one then the return
is C<undef>.

=item C<$str = $path-E<gt>figure ()>

Return "circle".

=back

=head1 FORMULAS

=head2 N to X,Y - Circle

As per above, each ring begins at

    Nring = step*d*(d-1)/2 + 1

This can be inverted to get the ring number d for a given N, and then
subtract Nring for a remainder into the ring.  (N-1)/step in the formula
effectively converts into triangular number style.

    d = floor((sqrt(8*(N-1)/step + 1) + 1) / 2)
    Nrem = N - Nring

Rings are sized so that points are spaced 1 unit apart.  There are three
cases,

    circle,  step<=6     unit radially on X axis
    polygon, step<=6     unit radially on sides centre
             step>=7     unit chord between points

For the circle shape the integer points are on a circle and fractional N is
on a straight line between those integer points.  This means it's a polygon
too, but one with ever more sides whereas ring_shape=polygon is a fixed
"step" many sides.

    circle       numsides = d*step
    polygon      numsides = step

The radial distance to a polygon corner is calculated as

                           base               varying with d
    ----------------     ---------------------------------------
    circle,  step<=6     0.5/sin(pi/step) + d-1
    polygon, step<=6     0.5/sin(pi/step) + (d-1)/cos(pi/step)
    circle,  step>=7     0                + 0.5/sin(pi/(d*step))
    polygon, step>=7     0                + d * 0.5/sin(pi/step)

The stepE<lt>=6 cases are an initial polygon of "step" many unit sides, then
unit spacing d-1 for circle, or for polygon (d-1)/cos(pi/step) which is
bigger and ensures the middle of the sides have unit spacing radially.

The 0.5/sin(pi/step) for radius of a unit sided polygon arises from

          r      ___---*
           ___---      | 1/2 = half the polygon side
     ___--- alpha      |
    o------------------+

    alpha = (2pi/numsides) / 2 = pi/numsides
    sin(alpha) = (1/2) / base_r
    r = 0.5 / sin(pi/numsides)

The angle theta to a polygon vertex is simply a full circle divided by
numsides.

    side = circle   Nrem
           polygon  floor(Nrem / step)
    theta = side * (2pi / numsides)
    vertex X = r * cos(theta)
           Y = r * sin(theta)

    next_theta = (side+1) * (2pi / numsides)
    next_vertex X = r * cos(next_theta)
                Y = r * sin(next_theta)

    frac into side
    f = circle   frac(Nrem)    = Nrem modulo 1
        polygon  Nrem - side*d = Nrem modulo d

    X = vertex_X + f * (next_vertex_X - vertex_X)
    Y = vertex_Y + f * (next_vertex_Y - vertex_Y)

If Nrem is an integer for circle, or multiple of d for polygon, then the
vertex X,Y is the final X,Y, otherwise a fractional distance between the
vertex X,Y and next vertex X,Y.

For a few cases X or Y are exact integers.  Special case code for these
cases can ensure floating point rounding of pi doesn't give small offsets
from integers.

For step=6 the base r is r=1 exactly since the innermost ring is a little
hexagon.  This means for the circle step=6 case the points on the X axis
(positive and negative) are all integers X=1,2,3,etc.

       P-----P
      /   1 / \ 1  <-- innermost points 1 apart
     /     /   \
    P     o-----P   <--  base_r = 1
     \      1  /
      \       /
       P-----P

If theta=pi, which is when 2*Nrem==d*step, then the point is on the negative
X axis.  Returning Y=0 exactly for that avoids sin(pi) giving some small
non-zero due to rounding.

If theta=pi/2 or theta=3pi/2, which is 4*Nrem==d*step or 4*Nrem==3*d*step,
then N is on the positive or negative Y axis (respectively).  Returning X=0
exactly avoids cos(pi/2) or cos(3pi/2) giving some small non-zero.

Points on the negative X axis points occur when the step is even.  Points on
the Y axis points occur when the step is a multiple of 4.

If theta=pi/4, 3*pi/4, 5*pi/4 or 7*pi/4, which is 8*Nrem==d*step, 3*d*step,
5*d*step or 7*d*step then the points are on the 45-degree lines X=Y or X=-Y.
The current code doesn't try to ensure X==Y in these cases.  The values are
not integers and floating point rounding might mean sin(pi/4)!=cos(pi/4)
resulting in X!=Y.

=head2 N to RSquared - Step 1

For step=1 the rings are point, line, triangle, square, pentagon, etc, with
vertices at radius=numsides-1.  For fractional N the triangle, square and
hexagon cases are quadratics in the fraction part, allowing exact values
from C<n_to_rsquared()>.

           Ring                    R^2
    ---------------------     --------------
    triangle   4 <= N < 7      4 - 12*f*(1-f)
    square     7 <= N < 11     9 - 18*f*(1-f)
    hexagon   16 <= N < 22    25 - 25*f*(1-f)

    f = N - int(N)  fractional part of N

For example for the square at N=7.5 have f=0.5 and R^2=4.5 exactly.  These
quadratics arise because sine of 2pi/3, 2pi/4 and 2pi/6 are square roots,
which on squaring up in R^2=X^2+Y^2 become integer factors for the fraction
f along the polygon side.

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include

=over

L<http://oeis.org/A005448> (etc)

=back

    A005448 A001844 A005891 A003215 A069099     3 to 7
    A016754 A060544 A062786 A069125 A003154     8 to 12
    A069126 A069127 A069128 A069129 A069130    13 to 17
    A069131 A069132 A069133                    18 to 20
        N on X axis of step=k, being the centred pentagonals

    step=1
      A002024    Radius+1, runs of n repeated n times

    step=8
      A090915    permutation N at X,-Y, mirror across X axis

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::SacksSpiral>,
L<Math::PlanePath::TheodorusSpiral>,
L<Math::PlanePath::PixelRings>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut