This file is indexed.

/usr/share/perl5/Math/PlanePath/KochSnowflakes.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=KochSnowflakes --lines --scale=10
#
# area approaches sqrt(48)/10
#     *     height=sqrt(1-1/4)=sqrt(3)/2
#    /|\    halfbase=1/2
#   / | \   trianglearea = sqrt(3)/4
#  *-----*
# segments = 3*4^level = 3,12,48,192,...
#
# with initial triangle area=1
# add a new triangle onto each side
# x,y scale by 3* so 9*area
#
# area[level+1] = 9*area[level] + segments
#               = 9*area[level] + 3*4^level

# area[0] = 1
# area[1] = 9*area[0] + 3       = 9 + 3 = 12
# area[2] = 9*area[1] + 3*4
#         = 9*(9*1 + 3) + 3*4
#         = 9*9 + 3*9 + 3*4     = 120
# area[3] = 9*area[2] + 3*4
#         = 9*(9*9 + 3*9 + 3*4) + 3*4^2
#         = 9^3 + 3*9^2 + 3*0*4 + 3*4^2

# area[level+1]
#   = 9^(level+1) + (9^(level+1) - 4^(level+1)) * 3/5
#   = (5*9^(level+1) + 3*9^(level+1) - 3*4^(level+1)) / 5
#   = (8*9^(level+1) - 3*4^(level+1)) / 5
#
# area[level] = (8*9^level - 3*4^level) / 5
#             = 1,12,120,1128,10344,93864,847848
#
#         .
#        / \       area[0] = 1
#       .---.  
#
#         .
#        / \       area=[1] = 12 = 9*area[0] + 3*4^0
#   .---.---.---.
#    \ / \ / \ /
#     .---.---.
#    / \ / \ / \
#   .---.---.---.
#        \ /
#         .
#
# area[level] / 9^level
#   = (8*9^level / 9^level - 3*4^level / 9^level) / 5
#   = (8 - 3*(4/0)^level)/5
#   -> 8/5   as level->infinity

# in integer coords
# initial triangle area
#         *       2/3        1*2 / 2 = 1 unit
#        / \
#       *---*     -1/3
#      -1   +1
#
# so area[level] / (sqrt(3)/2)



package Math::PlanePath::KochSnowflakes;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow';
use Math::PlanePath::KochCurve;

# uncomment this to run the ### lines
# use Smart::Comments;


use constant n_frac_discontinuity => 0;
use constant x_negative_at_n => 1;
use constant y_negative_at_n => 1;
use constant sumabsxy_minimum => 2/3; # minimum X=0,Y=2/3
use constant rsquared_minimum => 4/9; # minimum X=0,Y=2/3
# maybe: use constant radius_minimum => 2/3; # minimum X=0,Y=2/3

# jump across rings is WSW slope 2, so following maximums
use constant dx_maximum => 2;
use constant dy_maximum => 1;
use constant dsumxy_maximum => 2;
use constant ddiffxy_maximum => 2;

use constant absdx_minimum => 1; # never vertical
use constant dir_maximum_dxdy => (1,-1); # South-East

# N=1 gcd(-1, -1/3) = 1/3
# N=2 gcd( 1, -1/3) = 1/3
# N=3 gcd( 0, 2/3)  = 2/3
use constant gcdxy_minimum => 1/3;


#------------------------------------------------------------------------------
sub new {
  my $self = shift->SUPER::new (@_);
  $self->{'sides'} ||= 3; # default
  return $self;
}

# N=1 to 3      3 of, level=1
# N=4 to 15    12 of, level=2
# N=16 to ..   48 of, level=3
#
# each loop = 3*4^level
#
#     n_base = 1 + 3*4^0 + 3*4^1 + ... + 3*4^(level-1)
#            = 1 + 3*[ 4^0 + 4^1 + ... + 4^(level-1) ]
#            = 1 + 3*[ (4^level - 1)/3 ]
#            = 1 + (4^level - 1)
#            = 4^level
#
# each side = loop/3
#           = 3*4^level / 3
#           = 4^level
#
# 6 sides
# n_base = 1 + 2*3*4^0 + ...
#        = 2*4^level - 1
# level = log4 (n+1)/2

### loop 1: 3* 4**1
### loop 2: 3* 4**2
### loop 3: 3* 4**3

# sub _level_to_base {
#   my ($level) = @_;
#   return -3*$level + 4**($level+1) - 2;
# }
# ### level_to_base(1): _level_to_base(1)
# ### level_to_base(2): _level_to_base(2)
# ### level_to_base(3): _level_to_base(3)

sub n_to_xy {
  my ($self, $n) = @_;
  ### KochSnowflakes n_to_xy(): $n
  if ($n < 1) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  my $sides = $self->{'sides'};
  my ($sidelen, $level) = round_down_pow (($sides == 6 ? ($n+1)/2 : $n),
                                          4);
  my $base = ($sides == 6 ? 2*$sidelen - 1 : $sidelen);
  my $rem = $n - $base;

  ### $level
  ### $base
  ### $sidelen
  ### $rem
  ### assert: $n >= $base
  ### assert: $rem >= 0
  ### assert: $rem < $sidelen * $sides

  my $side = int($rem / $sidelen);
  ### $side
  ### $rem
  ### subtract: $side*$sidelen
  $rem -= $side*$sidelen;

  ### assert: $side >= 0 && $side < $sides

  my ($x, $y) = Math::PlanePath::KochCurve->n_to_xy ($rem);
  ### $x
  ### $y

  if ($sides == 3) {
    my $len = 3**($level-1);
    if ($side < 1) {
      ### horizontal rightwards
      return ($x - 3*$len,
              -$y - $len);
    } elsif ($side < 2) {
      ### right slope upwards
      return (($x-3*$y)/-2 + 3*$len,  # flip vert and rotate +120
              ($x+$y)/2 - $len);
    } else {
      ### left slope downwards
      return ((-3*$y-$x)/2,  # flip vert and rotate -120
              ($y-$x)/2 + 2*$len);
    }
  } else {

    #          3
    #     5-----4
    #  4 /       \
    #   /         \ 2
    #  6     o     3
    # 5 \   . .   /
    #    \ .   . / 1
    #     1-----2
    #      0
    #  7
    #
    my $len = 3**$level;
    $x -= $len;    # -y flip vert and offset
    $y = -$y - $len;
    if ($side >= 3) {
      ### rotate 180 ...
      $x = -$x;   # rotate 180
      $y = -$y;
      $side -= 3;
    }
    if ($side >= 2) {
      ### upper right slope upwards ...
      return (($x+3*$y)/-2,  # rotate +120
              ($x-$y)/2);
    }
    if ($side >= 1) {
      ### lower right slope upwards ...
      return (($x-3*$y)/2,  # rotate +60
              ($x+$y)/2);
    }
    ### horizontal ...
    return ($x,$y);
  }
}


# N=1 overlaps N=5
# N=2 overlaps N=7
#      +---------+         +---------+   Y=1.5
#      |         |         |         |
#      |         +---------+         |   Y=7/6 = 1.166
#      |         |         |         |
#      |    * 13 |         |    * 11 |   Y=1
#      |         |         |         |
#      |         |    * 3  |         |   Y=2/3 = 0.666
#      |         |         |         |
#      +---------+         +---------+   Y=0.5
#                |         |
#      +---------+---------+---------+   Y=1/6 = 0.166
#      |         |    O    |         | --Y=0
#      |         |         |         |
#      |         |         |         |
#      |    * 1  |         |    * 2  |   Y=-1/3 = -0.333
#      |         |         |         |
#      +---------+         +---------+   Y=-3/6 = -0.5
#      |         |         |         |
#      +---------+         +---------+   Y=-5/6 = -0.833
#      |         |         |         |
#      |    * 5  |         |    * 7  |   Y=-1
#      |         |         |         |
#      |         |         |         |
#      +---------+         +---------+   Y=-1.5
#
sub xy_to_n {
  return scalar((shift->xy_to_n_list(@_))[0]);
}
sub xy_to_n_list {
  my ($self, $x, $y) = @_;
  ### KochSnowflakes xy_to_n(): "$x, $y"

  $x = round_nearest ($x);
  if (abs($x) <= 1) {
    if ($x == 0) {
      my $y6 = 6*$y;
      if ($y6 >= 1 && $y6 < 7) {
        # Y = 2/3-1/2=1/6 to 2/3+1/2=7/6
        return 3;
      }
    } else {
      my $y6 = 6*$y;
      if ($y6 >= -5 && $y6 < 1) {
        # Y = -1/3-1/2=-5/6 to -1/3+1/2=+1/6
        return (1 + ($x > 0),
                ($y6 < -3 ? (5+2*($x>0)) : ()));   # 5 or 7 up to Y<-1/2
      }
    }
  }

  $y = round_nearest ($y);
  if (($x % 2) != ($y % 2)) {
    ### diff parity...
    return;
  }

  my $high;
  if ($x > 0 && $x >= -3*$y) {
    ### right upper third n=2 ...
    ($x,$y) = ((3*$y-$x)/2,   # rotate -120 and flip vert
               ($x+$y)/2);
    $high = 2;
  } elsif ($x <= 0 && 3*$y > $x) {
    ### left upper third n=3 ...
    ($x,$y) = (($x+3*$y)/-2,             # rotate +120 and flip vert
               ($y-$x)/2);
    $high = 3;
  } else {
    ### lower third n=1 ...
    $y = -$y;  # flip vert
    $high = 1;
  }
  ### rotate/flip is: "$x,$y"

  if ($y <= 0) {
    return;
  }

  my ($len,$level) = round_down_pow($y, 3);
  $level += 1;
  ### $level
  ### $len
  if (is_infinite($level)) {
    return $level;
  }


  $y -= $len;  # shift to Y=0 basis
  $len *= 3;

  ### compare for end: ($x+$y)." >= 3*len=".$len
  if ($x + $y >= $len) {
    ### past end of this level, no points ...
    return;
  }
  $x += $len;  # shift to X=0 basis

  my $n = Math::PlanePath::KochCurve->xy_to_n($x, $y);

  ### plain curve on: ($x+3*$len).",".($y-$len)."  n=".(defined $n && $n)
  ### $high
  ### high: (4**$level)*$high

  if (defined $n) {
    return (4**$level)*$high + $n;
  } else {
    return;
  }
}

# level extends to x= +/- 3^level
#                  y= +/- 2*3^(level-1)
#                   =     2/3 * 3^level
#                  1.5*y = 3^level
#
# ENHANCE-ME: share KochCurve segment checker to find actual min/max
#
# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### KochSnowflakes rect_to_n_range(): "$x1,$y1  $x2,$y2"

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;

  #
  #          |
  # +------  .   -----+
  # |x1,y2  /|\  x2,y2|
  #        / | \
  #       /  |  \
  # -----/---m---\-----
  #     /    |    \
  #    .-----------.
  #          |
  #           y1
  #        -------
  #
  # -y1 bottom horizontal
  # (x2+y2)/2 right side
  # (-x1+y2)/2 left side
  # each giving a power of 3 of the level
  #
  ### right: ($x2+$y2)/2
  ### left: (-$x1+$y2)/2
  ### bottom: -$y1

  my $sides = $self->{'sides'};
  my ($pow, $level) = round_down_pow (max ($sides == 6
                                           ? ($x1/-2,
                                              $x2/2,
                                              -$y1,
                                              $y2)
                                           : (int(($x2+$y2)/2),
                                              int((-$x1+$y2)/2),
                                              -$y1)),
                                      3);
  ### $level
  # end of $level is 1 before base of $level+1
  return (1, 4**($level+2) - 1);
}

#------------------------------------------------------------------------------
# Nstart = 4^k
# length = 3*4^k many points
# Nend = Nstart + length-1
#      = 4^k + 3*4^k - 1
#      = 4*4^k - 1
#      = Nstart(k+1) - 1
sub level_to_n_range {
  my ($self, $level) = @_;
  my $pow = 4**$level;
  return ($pow, 4*$pow-1);
}
sub n_to_level {
  my ($self, $n) = @_;
  if ($n < 1) { return undef; }
  if (is_infinite($n)) { return $n; }
  $n = round_nearest($n);
  my ($sidelen, $level) = round_down_pow (($self->{'sides'} == 6 ? ($n+1)/2 : $n),
                                          4);
  return $level;
}

#------------------------------------------------------------------------------
1;
__END__

=for stopwords eg Ryde ie SVG Math-PlanePath Ylo OEIS

=head1 NAME

Math::PlanePath::KochSnowflakes -- Koch snowflakes as concentric rings

=head1 SYNOPSIS

 use Math::PlanePath::KochSnowflakes;
 my $path = Math::PlanePath::KochSnowflakes->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path traces out concentric integer versions of the Koch snowflake at
successively greater iteration levels.

                               48                                6
                              /  \
                      50----49    47----46                       5
                        \              /
             54          51          45          42              4
            /  \        /              \        /  \
    56----55    53----52                44----43    41----40     3
      \                                                  /
       57                      12                      39        2
      /                       /  \                       \
    58----59          14----13    11----10          37----38     1
            \           \       3      /           /
             60          15  1----2   9          36         <- Y=0
            /                          \           \
    62----61           4---- 5    7---- 8           35----34    -1
      \                       \  /                       /
       63                       6                      33       -2
                                                         \
    16----17    19----20                28----29    31----32    -3
            \  /        \              /        \  /
             18          21          27          30             -4
                        /              \
                      22----23    25----26                      -5
                              \  /
                               24                               -6

                                ^
    -9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7  8  9

The initial figure is the triangle N=1,2,3 then for the next level each
straight side expands to 3x longer and a notch like N=4 through N=8,

      *---*     becomes     *---*   *---*
                                 \ /
                                  *

The angle is maintained in each replacement, for example the segment N=5 to
N=6 becomes N=20 to N=24 at the next level.

=head2 Triangular Coordinates

The X,Y coordinates are arranged as integers on a square grid per
L<Math::PlanePath/Triangular Lattice>, except the Y coordinates of the
innermost triangle which is

                  N=3     X=0, Y=+2/3
                   *
                  / \
                 /   \
                /     \
               /   o   \
              /         \
         N=1 *-----------* N=2
    X=-1, Y=-1/3      X=1, Y=-1/3

These values are not integers, but they're consistent with the
centring and scaling of the higher levels.  If all-integer is desired
then rounding gives Y=0 or Y=1 and doesn't overlap the subsequent
points.

=head2 Level Ranges

Counting the innermost triangle as level 0, each ring is

    Nstart = 4^level
    length = 3*4^level    many points

For example the outer ring shown above is level 2 starting N=4^2=16 and
having length=3*4^2=48 points (through to N=63 inclusive).

The X range at a given level is the initial triangle baseline iterated out.
Each level expands the sides by a factor of 3 so

     Xlo = -(3^level)
     Xhi = +(3^level)

For example level 2 above runs from X=-9 to X=+9.  The Y range is the
points N=6 and N=12 iterated out.  Ylo in level 0 since there's no
downward notch on that innermost triangle.

    Ylo = / -(2/3)*3^level if level >= 1
          \ -1/3           if level == 0
    Yhi = +(2/3)*3^level

Notice that for each level the extents grow by a factor of 3 but the
notch introduced in each segment is not big enough to go past the
corner positions.  They can equal the extents horizontally, for
example in level 1 N=14 is at X=-3 the same as the corner N=4, and on
the right N=10 at X=+3 the same as N=8, but they don't go past.

The snowflake is an example of a fractal curve with ever finer
structure.  The code here can be used for that by going from N=Nstart
to N=Nstart+length-1 and scaling X/3^level Y/3^level to give a 2-wide
1-high figure of desired fineness.  See F<examples/koch-svg.pl> in the
Math-PlanePath sources for a complete program doing that as an SVG
image file.

=head2 Area

The area of the snowflake at a given level can be calculated from the area
under the Koch curve per L<Math::PlanePath::KochCurve/Area> which is the 3
sides, and the central triangle

                 *          ^ Yhi
                / \         |          height = 3^level
               /   \        |                 
              /     \       |
             *-------*      v

             <------->      width = 3^level - (- 3^level) = 2*3^level
            Xlo      Xhi

    triangle_area = width*height/2 = 9^level

    snowflake_area[level] = triangle_area[level] + 3*curve_area[level]
                          = 9^level + 3*(9^level - 4^level)/5
                          = (8*9^level - 3*4^level) / 5

If the snowflake is conceived as a fractal of fixed initial triangle size
and ever-smaller notches then the area is divided by that central triangle
area 9^level,

    unit_snowflake[level] = snowflake_area[level] / 9^level
                          = (8 - 3*(4/9)^level) / 5
                          -> 8/5      as level -> infinity

Which is the well-known 8/5 * initial triangle area for the fractal
snowflake.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::KochSnowflakes-E<gt>new ()>

Create and return a new path object.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return per L</Level Ranges> above,

    (4**$level,
     4**($level+1) - 1)

=back

=head1 FORMULAS

=head2 Rectangle to N Range

As noted in L</Level Ranges> above, for a given level

          -(3^level) <= X <= 3^level
    -(2/3)*(3^level) <= Y <= (2/3)*(3^level)

So the maximum X,Y in a rectangle gives

    level = ceil(log3(max(abs(x1), abs(x2), abs(y1)*3/2, abs(y2)*3/2)))

and the last point in that level is

    Nlevel = 4^(level+1) - 1

Using this as an N range is an over-estimate, but an easy calculation.  It's
not too difficult to trace down for an exact range


=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to the
Koch snowflake include the following.  See
L<Math::PlanePath::KochCurve/OEIS> for entries related to a single Koch side.

=over

L<http://oeis.org/A164346> (etc)

=back

    A164346   number of points in ring n, being 3*4^n
    A178789   number of acute angles in ring n, 4^n + 2
    A002446   number of obtuse angles in ring n, 2*4^n - 2

The acute angles are those of +/-120 degrees and the obtuse ones +/-240
degrees.  Eg. in the outer ring=2 shown above the acute angles are at N=18,
22, 24, 26, etc.  The angles are all either acute or obtuse, so

    A178789 + A002446 = A164346

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::KochCurve>,
L<Math::PlanePath::KochPeaks>

L<Math::PlanePath::QuadricIslands>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014 Kevin Ryde

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut