This file is indexed.

/usr/share/perl5/Math/PlanePath/HexArms.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=HexArms --lines --scale=10
# math-image --path=HexArms --all --output=numbers_dash
# math-image --path=HexArms --values=Polygonal,polygonal=8

# Abundant: A005101
# octagonal numbers ...
# 26-gonal near vertical x2
# 152 near horizontal
#
# 2
# 164  +162
# 542  +378  +216
# 1136 +594  +216
#

package Math::PlanePath::HexArms;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::Base::Generic
  'round_nearest';

# uncomment this to run the ### lines
#use Devel::Comments '###';


use constant arms_count => 6;
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_even;

use constant x_negative_at_n => 4;
use constant y_negative_at_n => 6;
use constant dx_minimum => -2;
use constant dx_maximum => 2;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
*_UNDOCUMENTED__dxdy_list = \&Math::PlanePath::_UNDOCUMENTED__dxdy_list_six;
use constant absdx_minimum => 1;
use constant dsumxy_minimum => -2; # diagonals
use constant dsumxy_maximum => 2;
use constant ddiffxy_minimum => -2;
use constant ddiffxy_maximum => 2;
use constant dir_maximum_dxdy => (1,-1); # South-East


#------------------------------------------------------------------------------

# [ 0, 1, 2, 3,],
# [ 0, 1, 3, 6 ],
# N = (1/2 d^2 + 1/2 d)
# d = -1/2 + sqrt(2 * $n + 1/4)
#   = (-1 + 2*sqrt(2 * $n + 1/4)) / 2
#   = (-1 + sqrt(8 * $n + 1)) / 2

sub n_to_xy {
  my ($self, $n) = @_;
  #### HexArms n_to_xy: $n

  if ($n < 2) {
    if ($n < 1) { return; }
    ### centre
    $n--;
    return ($n, -$n);  # from n=1 towards n=7 at x=1,y=-1
  }
  $n -= 2;

  my $frac;
  { my $int = int($n);
    $frac = $n - $int;
    $n = $int;  # BigFloat int() gives BigInt, use that
  }

  # arm as initial rotation
  my $rot = _divrem_mutate($n,6);
  ### $n

  my $d = int ((-1 + sqrt(8 * $n + 1)) / 2);
  ### d frac: ((-1 + sqrt(8 * $n + 1)) / 2)
  ### $d
  ### base: $d*($d+1)/2

  $n -= $d*($d+1)/2;
  ### remainder: $n
  ### assert: $n <= $d

  $rot += ($d % 6);
  my $x = $frac + 2 + $d + $n;
  my $y = $frac     - $d + $n;

  $rot %= 6;
  if ($rot >= 3) {
    $rot -= 3;
    $x = -$x;  # rotate 180
    $y = -$y;
  }
  if ($rot == 0) {
    return ($x,$y);
  } elsif ($rot == 1) {
    return (($x-3*$y)/2,   # rotate +60
            ($x+$y)/2);
  } else {
    return (($x+3*$y)/-2,  # rotate +120
            ($x-$y)/2);
  }
}

sub xy_to_n {
  my ($self, $x, $y) = @_;

  $x = round_nearest ($x);
  $y = round_nearest ($y);
  ### HexArms xy_to_n: "x=$x, y=$y"
  if (($x ^ $y) & 1) {
    return undef;  # nothing on odd points
  }
  if ($x == 0 && $y == 0) {
    return 1;
  }

  my $rot = 0;
  # eg. y=2 have (0<=>$y)-$y == -1-2 == -3
  if ($x < (0 <=> $y) - $y) {
    ### left diagonal half ...
    $rot = 3;
    $x = -$x;  # rotate 180
    $y = -$y;
  }
  if ($x < $y) {
    ### upper mid sixth, rot 2 ...
    $rot += 2;
    ($x,$y) = ((3*$y-$x)/2,              # rotate -120
               ($x+$y)/-2);
  } elsif ($y > 0) {
    ### first sixth, rot 1 ...
    $rot++;
    ($x,$y) = (($x+3*$y)/2,   # rotate -60
               ($y-$x)/2);
  } else {
    ### last sixth, rot 0 ...
  }
  ### assert: ($x+$y) % 2 == 0

  # diagonal down from N=2
  #     d=0  n=2
  #     d=6  n=128
  #     d=12  n=470
  # N = (3 d^2 + 3 d + 2)
  #   = ((3*$d + 3)*$d + 2)
  # xoffset = 3*($x+$y-2)
  # N + xoffset = ((3*$d + 3)*$d + 2) + 3*($x+$y-2)
  #             = (3*$d + 3)*$d + 2 + 3*($x+$y) - 6
  #             = (3*$d + 3)*$d + 3*($x+$y) - 4
  #
  my $d = ($x-$y-2)/2;
  ### xy: "$x,$y"
  ### $rot
  ### x offset: $x+$y-2
  ### x offset sixes: 3*($x+$y-2)
  ### quadratic: "d=$d  q=".((3*$d + 3)*$d + 2)
  ### d mod: $d % 6
  ### rot d mod: (($rot-$d) % 6)
  return ((3*$d + 3)*$d) + 3*($x+$y) - 4 + (($rot-$d) % 6);
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;

  # d    = [ 1, 2,   3,  4,  5,   6,   7,   8,   9 ],
  # Nmax = [ 7, 19, 37, 61, 91, 127, 169, 217, 271 ]
  #   being the N=7 arm one spot before the corner of each run
  # N = (3 d^2 + 3 d + 1)
  #   = ((3*$d + 3)*$d + 1)
  #
  my $d = _rect_to_hex_radius ($x1,$y1, $x2,$y2);
  return (1,
          ((3*$d + 3)*$d + 1));
}

# hexagonal distance
sub _rect_to_hex_radius {
  my ($x1,$y1, $x2,$y2) = @_;

  $x1 = abs (round_nearest ($x1));
  $y1 = abs (round_nearest ($y1));
  $x2 = abs (round_nearest ($x2));
  $y2 = abs (round_nearest ($y2));

  # radial symmetric in +/-y
  my $y = max (abs($y1), abs($y2));

  # radial symmetric in +/-x
  my $x = max (abs($x1), abs($x2));

  return ($y >= $x
          ? $y                      # middle
          : int(($x + $y + 1)/2));  # end, round up
}

1;
__END__

=for stopwords Math-PlanePath Ryde

=head1 NAME

Math::PlanePath::HexArms -- six spiral arms

=head1 SYNOPSIS

 use Math::PlanePath::HexArms;
 my $path = Math::PlanePath::HexArms->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path follows six spiral arms, each advancing successively,

                                   ...--66                      5
                                          \
             67----61----55----49----43    60                   4
            /                         \      \
         ...    38----32----26----20    37    54                3
               /                    \     \     \
             44    21----15---- 9    14    31    48   ...       2
            /     /              \      \    \     \     \
          50    27    10---- 4     3     8    25    42    65    1
          /    /     /                 /     /     /     /
       56    33    16     5     1     2    19    36    59    <-Y=0
      /     /     /     /        \        /     /     /
    62    39    22    11     6     7----13    30    53         -1
      \     \     \     \     \              /     /
      ...    45    28    17    12----18----24    47            -2
               \     \     \                    /
                51    34    23----29----35----41   ...         -3
                  \     \                          /
                   57    40----46----52----58----64            -4
                     \
                      63--...                                  -5

     ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
    -9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7  8  9

The X,Y points are integers using every second position to give a triangular
lattice, per L<Math::PlanePath/Triangular Lattice>.

Each arm is N=6*k+rem for a remainder rem=0,1,2,3,4,5, so sequences related
to multiples of 6 or with a modulo 6 pattern may fall on particular arms.

=head2 Abundant Numbers

The "abundant" numbers are those N with sum of proper divisors E<gt> N.  For
example 12 is abundant because it's divisible by 1,2,3,4,6 and their sum is
16.  All multiples of 6 starting from 12 are abundant.  Plotting the
abundant numbers on the path gives the 6*k arm and some other points in
between,

                * * * * * * * * * * * *   *   *   ...
               *                       *           *
              *   *   *           *     *   *       *
             *                           *           *
            *           *                 *           *
           *                           *   *           *
          *           * * * * * *           *       *   *
         *           *           *   *       *           *
        *   *   *   *         *   *           *       *   *
       *           *               *   *   *   *           *
      *   *   *   *                 *           *   *       *
     *           *   *             *   *       *           *
    *       *   *                 *           *           *
     *           *           * * *           *           *
      *           *                 *       *           *
       *   *       *   *   *           *   *           *
        *           *                     *   *       *
         *           *       *           *           *
          *   *       *                 *   *   *   *
           *           * * * * * * * * *           *
            *   *                         *       *
             *         *       *                 *
              *   *                         *   *
               *         *       *       *     *
                *                             *
                 * * * * * * * * * * * * * * *

There's blank arms either side of the 6*k because 6*k+1 and 6*k-1 are not
abundant until some fairly big values.  The first abundant 6*k+1 might be
5,391,411,025, and the first 6*k-1 might be 26,957,055,125.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::HexArms-E<gt>new ()>

Create and return a new square spiral object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.

For C<$n E<lt> 1> the return is an empty list, as the path starts at 1.

Fractional C<$n> gives a point on the line between C<$n> and C<$n+6>, that
C<$n+6> being the next on the same spiralling arm.  This is probably of
limited use, but arises fairly naturally from the calculation.

=back

=head2 Descriptive Methods

=over

=item C<$arms = $path-E<gt>arms_count()>

Return 6.

=back

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::SquareArms>,
L<Math::PlanePath::DiamondArms>,
L<Math::PlanePath::HexSpiral>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut