/usr/share/perl5/Math/PlanePath/GrayCode.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 | # Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# math-image --path=GrayCode,apply_type=N --all --output=numbers_dash --size=28x19
# C. Faloutsos, Gray Codes for Partial Match and Range Queries, IEEE
# Trans. on Software Engineering (TSE), Vol. 14, No. 10, pp. 1381-1393,
# Oct. 1988. http://dx.doi.org/10.1109/32.6184
package Math::PlanePath::GrayCode;
use 5.004;
use strict;
use Carp 'croak';
#use List::Util 'max';
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'round_down_pow',
'digit_split_lowtohigh',
'digit_join_lowtohigh';
# uncomment this to run the ### lines
#use Smart::Comments;
use constant n_start => 0;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_visited_quad1;
use constant parameter_info_array =>
[
{ name => 'apply_type',
share_key => 'apply_type_TsF',
display => 'Apply Type',
type => 'enum',
default => 'TsF',
choices => ['TsF','Ts','Fs','FsT','sT','sF'],
choices_display => ['TsF','Ts','Fs','FsT','sT','sF'],
description => 'How to apply the Gray coding to/from and split.',
},
{ name => 'gray_type',
display => 'Gray Type',
type => 'enum',
default => 'reflected',
choices => ['reflected','modular'],
choices_dispaly => ['Reflected','Modular'],
description => 'The type of Gray code.',
},
{ %{Math::PlanePath::Base::Digits::parameter_info_radix2()},
description => 'Radix, for both the Gray code and splitting.',
},
];
sub _is_peano {
my ($self) = @_;
return ($self->{'radix'} % 2 == 1
&& $self->{'gray_type'} eq 'reflected'
&& ($self->{'apply_type'} eq 'TsF'
|| $self->{'apply_type'} eq 'FsT'));
}
sub dx_minimum {
my ($self) = @_;
return (_is_peano($self) ? -1 : undef);
}
*dy_minimum = \&dx_minimum;
sub dx_maximum {
my ($self) = @_;
return (_is_peano($self) ? 1 : undef);
}
*dy_maximum = \&dx_maximum;
{
# Ror sT and sF the split X coordinate changes from N to N+1 and so does
# the to-gray or from-gray transformation, so X always changes.
#
my %absdx_minimum = (
reflected => {
# TsF => 0,
# FsT => 0,
# Ts => 0,
# Fs => 0,
sT => 1,
sF => 1,
},
modular => {
# TsF => 0,
# Ts => 0,
Fs => 1,
FsT => 1,
sT => 1,
sF => 1,
},
);
sub absdx_minimum {
my ($self) = @_;
my $gray_type = ($self->{'radix'} == 2
? 'reflected'
: $self->{'gray_type'});
return ($absdx_minimum{$gray_type}->{$self->{'apply_type'}} || 0);
}
}
*dsumxy_minimum = \&dx_minimum;
*dsumxy_maximum = \&dx_maximum;
*ddiffxy_minimum = \&dx_minimum;
*ddiffxy_maximum = \&dx_maximum;
{
my %dir_maximum_supremum = (
# # radix==2 always "reflected"
# # TsF => 0,
# # FsT => 0,
# # Ts => 0,
# # Fs => 0,
# sT => 4,
# sF => 4,
reflected => {
# TsF => 0,
# FsT => 0,
# Ts => 0,
# Fs => 0,
sT => 4,
sF => 4,
},
modular => {
# TsF => 0,
# Ts => 0,
Fs => 4,
FsT => 4,
sT => 4,
sF => 4,
},
);
sub dir_maximum_dxdy {
my ($self) = @_;
my $gray_type = ($self->{'radix'} == 2
? 'reflected'
: $self->{'gray_type'});
return ($dir_maximum_supremum{$gray_type}->{$self->{'apply_type'}}
? (0,0) # supremum
: (0,-1)); # South
}
}
#------------------------------------------------------------------------------
my %funcbase = (T => '_digits_to_gray',
F => '_digits_from_gray',
'' => '_noop');
my %inv = (T => 'F',
F => 'T',
'' => '');
sub new {
my $self = shift->SUPER::new(@_);
if (! $self->{'radix'} || $self->{'radix'} < 2) {
$self->{'radix'} = 2;
}
my $apply_type = ($self->{'apply_type'} ||= 'TsF');
my $gray_type = ($self->{'gray_type'} ||= 'reflected');
unless ($apply_type =~ /^([TF]?)s([TF]?)$/) {
croak "Unrecognised apply_type \"$apply_type\"";
}
my $nf = $1; # "T" or "F" or ""
my $xyf = $2;
$self->{'n_func'} = $self->can("$funcbase{$nf}_$gray_type")
|| croak "Unrecognised gray_type \"$self->{'gray_type'}\"";
$self->{'xy_func'} = $self->can("$funcbase{$xyf}_$gray_type");
$nf = $inv{$nf};
$xyf = $inv{$xyf};
$self->{'inverse_n_func'} = $self->can("$funcbase{$nf}_$gray_type");
$self->{'inverse_xy_func'} = $self->can("$funcbase{$xyf}_$gray_type");
return $self;
}
sub n_to_xy {
my ($self, $n) = @_;
### GrayCode n_to_xy(): $n
if ($n < 0) {
return;
}
if (is_infinite($n)) {
return ($n,$n);
}
{
# ENHANCE-ME: N and N+1 differ by not much ...
my $int = int($n);
### $int
if ($n != $int) {
my $frac = $n - $int; # inherit possible BigFloat/BigRat
### $frac
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+1);
my $dx = $x2-$x1;
my $dy = $y2-$y1;
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int; # BigFloat int() gives BigInt, use that
}
my $radix = $self->{'radix'};
my @digits = digit_split_lowtohigh($n,$radix);
$self->{'n_func'}->(\@digits, $radix);
my @xdigits;
my @ydigits;
while (@digits) {
push @xdigits, shift @digits; # low to high
push @ydigits, shift @digits || 0;
}
my $xdigits = \@xdigits;
my $ydigits = \@ydigits;
$self->{'xy_func'}->($xdigits,$radix);
$self->{'xy_func'}->($ydigits,$radix);
return (digit_join_lowtohigh($xdigits,$radix),
digit_join_lowtohigh($ydigits,$radix));
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### GrayCode xy_to_n(): "$x, $y"
$x = round_nearest ($x);
$y = round_nearest ($y);
if ($x < 0 || $y < 0) {
return undef;
}
if (is_infinite($x)) {
return $x;
}
if (is_infinite($y)) {
return $y;
}
my $radix = $self->{'radix'};
my @xdigits = digit_split_lowtohigh ($x, $radix);
my @ydigits = digit_split_lowtohigh ($y, $radix);
$self->{'inverse_xy_func'}->(\@xdigits, $radix);
$self->{'inverse_xy_func'}->(\@ydigits, $radix);
my @digits;
for (;;) {
(@xdigits || @ydigits) or last;
push @digits, shift @xdigits || 0;
(@xdigits || @ydigits) or last;
push @digits, shift @ydigits || 0;
}
my $digits = \@digits;
$self->{'inverse_n_func'}->($digits,$radix);
return digit_join_lowtohigh($digits,$radix);
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
$x1 = round_nearest($x1);
$y1 = round_nearest($y1);
$x2 = round_nearest($x2);
$y2 = round_nearest($y2);
if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); } # x1 smaller
if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); } # y1 smaller
if ($y2 < 0 || $x2 < 0) {
return (1, 0); # rect all negative, no N
}
my $radix = $self->{'radix'};
my ($pow_max) = round_down_pow (max($x2,$y2), $radix);
$pow_max *= $radix;
return (0, $pow_max*$pow_max - 1);
}
#------------------------------------------------------------------------------
use constant 1.02 _noop_reflected => undef;
use constant 1.02 _noop_modular => undef;
# $aref->[0] low digit
sub _digits_to_gray_reflected {
my ($aref, $radix) = @_;
### _digits_to_gray(): $aref
$radix -= 1;
my $reverse = 0;
foreach my $digit (reverse @$aref) { # high to low
if ($reverse & 1) {
$digit = $radix - $digit; # radix-1 - digit
}
$reverse ^= $digit;
}
}
# $aref->[0] low digit
sub _digits_to_gray_modular {
my ($aref, $radix) = @_;
my $offset = 0;
foreach my $digit (reverse @$aref) { # high to low
$offset += ($digit = ($digit - $offset) % $radix); # mutate $aref->[i]
}
}
# $aref->[0] low digit
sub _digits_from_gray_reflected {
my ($aref, $radix) = @_;
$radix -= 1; # radix-1
my $reverse = 0;
foreach my $digit (reverse @$aref) { # high to low
if ($reverse & 1) {
$reverse ^= $digit; # before this reversal
$digit = $radix - $digit; # radix-1 - digit, mutate array
} else {
$reverse ^= $digit;
}
}
}
# $aref->[0] low digit
sub _digits_from_gray_modular {
my ($aref, $radix) = @_;
### _digits_from_gray_modular(): $aref
my $offset = 0;
foreach my $digit (reverse @$aref) { # high to low
$offset = ($digit = ($digit + $offset) % $radix); # mutate $aref->[i]
}
}
#------------------------------------------------------------------------------
# levels
use Math::PlanePath::ZOrderCurve;
*level_to_n_range = \&Math::PlanePath::ZOrderCurve::level_to_n_range;
*n_to_level = \&Math::PlanePath::ZOrderCurve::n_to_level;
#------------------------------------------------------------------------------
1;
__END__
=for stopwords Ryde Math-PlanePath eg Radix radix ie Christos Faloutsos Fs FsT sF pre TsF Peano radices Peano's xk yk OEIS PlanePath undoubled pre-determined
=head1 NAME
Math::PlanePath::GrayCode -- Gray code coordinates
=head1 SYNOPSIS
use Math::PlanePath::GrayCode;
my $path = Math::PlanePath::GrayCode->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
X<Faloutsos, Christos>X<Gray code>This is a mapping of N to X,Y using Gray
codes. The default is the form by Christos Faloutsos which is an X,Y split
in binary reflected Gray code.
7 | 63-62 57-56 39-38 33-32
| | | | |
6 | 60-61 58-59 36-37 34-35
|
5 | 51-50 53-52 43-42 45-44
| | | | |
4 | 48-49 54-55 40-41 46-47
|
3 | 15-14 9--8 23-22 17-16
| | | | |
2 | 12-13 10-11 20-21 18-19
|
1 | 3--2 5--4 27-26 29-28
| | | | |
Y=0 | 0--1 6--7 24-25 30-31
|
+-------------------------
X=0 1 2 3 4 5 6 7
N is converted to a Gray code, then split by bits to X,Y, and those X,Y
converted back from Gray to integer indices. Stepping from N to N+1 changes
just one bit of the Gray code and therefore changes just one of X or Y each
time.
Y axis N=0,3,12,15,48,etc are values with only digits 0,3 in base 4. X axis
N=0,1,6,7,24,25,etc are values 2k and 2k+1 where k uses only digits 0,3 in
base 4.
=head2 Radix
The default is binary. The C<radix =E<gt> $r> option can select another
radix. This is used for both the Gray code and the digit splitting. For
example C<radix =E<gt> 4>,
radix => 4
|
127-126-125-124 99--98--97--96--95--94--93--92 67--66--65--64
| | | |
120-121-122-123 100-101-102-103 88--89--90--91 68--69--70--71
| | | |
119-118-117-116 107-106-105-104 87--86--85--84 75--74--73--72
| | | |
112-113-114-115 108-109-110-111 80--81--82--83 76--77--78--79
15--14--13--12 19--18--17--16 47--46--45--44 51--50--49--48
| | | |
8-- 9--10--11 20--21--22--23 40--41--42--43 52--53--54--55
| | | |
7-- 6-- 5-- 4 27--26--25--24 39--38--37--36 59--58--57--56
| | | |
0-- 1-- 2-- 3 28--29--30--31--32--33--34--35 60--61--62--63
=head2 Apply Type
Option C<apply_type =E<gt> $str> controls how Gray codes are applied to N
and X,Y. It can be one of
"TsF" to Gray, split, from Gray (default)
"Ts" to Gray, split
"Fs" from Gray, split
"FsT" from Gray, split, to Gray
"sT" split, to Gray
"sF" split, from Gray
"T" means integer-to-Gray, "F" means integer-from-Gray, and omitted means no
transformation. For example the following is "Ts" which means N to Gray
then split, leaving Gray coded values for X,Y.
=cut
# math-image --path=GrayCode,apply_type=Ts --all --output=numbers_dash
=pod
apply_type => "Ts"
7 | 51--50 52--53 44--45 43--42
| | | | |
6 | 48--49 55--54 47--46 40--41
|
5 | 60--61 59--58 35--34 36--37 ...-66
| | | | | |
4 | 63--62 56--57 32--33 39--38 64--65
|
3 | 12--13 11--10 19--18 20--21
| | | | |
2 | 15--14 8-- 9 16--17 23--22
|
1 | 3-- 2 4-- 5 28--29 27--26
| | | | |
Y=0 | 0-- 1 7-- 6 31--30 24--25
|
+---------------------------------
X=0 1 2 3 4 5 6 7
This "Ts" is quite attractive because a step from N to N+1 changes just one
bit in X or Y alternately, giving 2-D single-bit changes. For example N=19
at X=4 followed by N=20 at X=6 is a single bit change in X.
N=0,2,8,10,etc on the leading diagonal X=Y is numbers using only digits 0,2
in base 4. N=0,3,15,12,etc on the Y axis is numbers using only digits 0,3
in base 4, but in a Gray code order.
The "Fs", "FsT" and "sF" forms effectively treat the input N as a Gray code
and convert from it to integers, either before or after split. For "Fs" the
effect is little Z parts in various orientations.
apply_type => "sF"
7 | 32--33 37--36 52--53 49--48
| / \ / \
6 | 34--35 39--38 54--55 51--50
|
5 | 42--43 47--46 62--63 59--58
| \ / \ /
4 | 40--41 45--44 60--61 57--56
|
3 | 8-- 9 13--12 28--29 25--24
| / \ / \
2 | 10--11 15--14 30--31 27--26
|
1 | 2-- 3 7-- 6 22--23 19--18
| \ / \ /
Y=0 | 0-- 1 5-- 4 20--21 17--16
|
+---------------------------------
X=0 1 2 3 4 5 6 7
=head2 Gray Type
The C<gray_type> option selects what type of Gray code is used. The choices
are
"reflected" increment to radix-1 then decrement (default)
"modular" cycle from radix-1 back to 0
For example in decimal,
integer Gray Gray
"reflected" "modular"
------- ----------- ---------
0 0 0
1 1 1
2 2 2
... ... ...
8 8 8
9 9 9
10 19 19
11 18 10
12 17 11
13 16 12
14 15 13
... ... ...
17 12 16
18 11 17
19 10 18
Notice on reaching "19" the reflected type runs the least significant digit
downwards from 9 to 0, which is a reverse or reflection of the preceding 0
to 9 upwards. The modular form instead continues to increment that least
significant digit, wrapping around from 9 to 0.
In binary the modular and reflected forms are the same (see L</Equivalent
Combinations> below).
There's various other systematic ways to make a Gray code changing a single
digit successively. But many ways are implicitly based on a pre-determined
fixed number of bits or digits, which doesn't suit an unlimited path as
given here.
=head2 Equivalent Combinations
Some option combinations are equivalent,
condition equivalent
--------- ----------
radix=2 modular==reflected
and TsF==Fs, Ts==FsT
radix>2 odd reflected TsF==FsT, Ts==Fs, sT==sF
because T==F
radix>2 even reflected TsF==Fs, Ts==FsT
In radix=2 binary the "modular" and "reflected" Gray codes are the same
because there's only digits 0 and 1 so going forward or backward is the
same.
For odd radix and reflected Gray code, the "to Gray" and "from Gray"
operations are the same. For example the following table is ternary
radix=3. Notice how integer value 012 maps to Gray code 010, and in turn
integer 010 maps to Gray code 012. All values are either pairs like that or
unchanged like 021.
integer Gray
"reflected" (written in ternary)
000 000
001 001
002 002
010 012
011 011
012 010
020 020
021 021
022 022
For even radix and reflected Gray code, "TsF" is equivalent to "Fs", and
also "Ts" equivalent to "FsT". This arises from the way the reversing
behaves when split across digits of two X,Y values. (In higher dimensions
such as a split to 3-D X,Y,Z it's not the same.)
The net effect for distinct paths is
condition distinct combinations
--------- ---------------------
radix=2 four TsF==Fs, Ts==FsT, sT, sF
radix>2 odd / three reflected TsF==FsT, Ts==Fs, sT==sF
\ six modular TsF, Ts, Fs, FsT, sT, sF
radix>2 even / four reflected TsF==Fs, Ts==FsT, sT, sF
\ six modular TsF, Ts, Fs, FsT, sT, sF
=head2 Peano Curve
In C<radix =E<gt> 3> and other odd radices the "reflected" Gray type gives
the Peano curve (see L<Math::PlanePath::PeanoCurve>). The "reflected"
encoding is equivalent to Peano's "xk" and "yk" complementing.
=cut
# math-image --path=GrayCode,radix=3,gray_type=reflected --all --output=numbers_dash
=pod
radix => 3, gray_type => "reflected"
|
53--52--51 38--37--36--35--34--33
| | |
48--49--50 39--40--41 30--31--32
| | |
47--46--45--44--43--42 29--28--27
|
6-- 7-- 8-- 9--10--11 24--25--26
| | |
5-- 4-- 3 14--13--12 23--22--21
| | |
0-- 1-- 2 15--16--17--18--19--20
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for the behaviour common to all path
classes.
=over 4
=item C<$path = Math::PlanePath::GrayCode-E<gt>new ()>
=item C<$path = Math::PlanePath::GrayCode-E<gt>new (radix =E<gt> $r, apply_type =E<gt> $str, gray_type =E<gt> $str)>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
=item C<$n = $path-E<gt>n_start ()>
Return the first N on the path, which is 0.
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<(0, $radix**(2*$level) - 1)>.
=back
=head1 FORMULAS
=head2 Turn
The turns in the default binary TsF curve are either to the left +90 or a
reverse 180. For example at N=2 the curve turns left, then at N=3 it
reverses back 180 to go to N=4. The turn is given by the low zero bits of
(N+1)/2,
count_low_0_bits(floor((N+1)/2))
if even then turn 90 left
if odd then turn 180 reverse
Or equivalently
floor((N+1)/2) lowest non-zero digit in base 4,
1 or 3 = turn 90 left
2 = turn 180 reverse
The 180 degree reversals are all horizontal. They occur because at those N
the three N-1,N,N+1 converted to Gray code have the same bits at odd
positions and therefore the same Y coordinate.
See L<Math::PlanePath::KochCurve/N to Turn> for similar turns based on low
zero bits (but by +60 and -120 degrees).
=head1 OEIS
This path is in Sloane's Online Encyclopedia of Integer Sequences in a few
forms,
=over
L<http://oeis.org/A163233> (etc)
=back
apply_type="TsF", radix=2 (the defaults)
A039963 turn sequence, 1=+90 left, 0=180 reverse
A035263 turn undoubled, at N=2n and N=2n+1
A065882 base4 lowest non-zero,
turn undoubled 1,3=left 2=180rev at N=2n,2n+1
A003159 (N+1)/2 of positions of Left turns,
being n with even number of low 0 bits
A036554 (N+1)/2 of positions of Right turns
being n with odd number of low 0 bits
The turn sequence goes in pairs, so N=1 and N=2 left then N=3 and N=4
reverse. A039963 includes that repetition, A035263 is just one copy of each
and so is the turn at each pair N=2k and N=2k+1. There's many sequences
like A065882 which when taken mod2 equal the "count low 0-bits odd/even"
which is the same undoubled turn sequence.
apply_type="sF", radix=2
A163233 N values by diagonals, same axis start
A163234 inverse permutation
A163235 N values by diagonals, opp axis start
A163236 inverse permutation
A163242 N sums along diagonals
A163478 those sums divided by 3
A163237 N values by diagonals, same axis, flip digits 2,3
A163238 inverse permutation
A163239 N values by diagonals, opp axis, flip digits 2,3
A163240 inverse permutation
A099896 N values by PeanoCurve radix=2 order
A100280 inverse permutation
apply_type="FsT", radix=3, gray_type=modular
A208665 N values on X=Y diagonal, base 9 digits 0,3,6
Gray code conversions themselves (not directly offered by the PlanePath code
here) are variously
A003188 binary
A014550 binary with values written in binary
A006068 inverse, Gray->integer
A128173 ternary reflected (its own inverse)
A105530 ternary modular
A105529 inverse, Gray->integer
A003100 decimal reflected
A174025 inverse, Gray->integer
A098488 decimal modular
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::ZOrderCurve>,
L<Math::PlanePath::PeanoCurve>,
L<Math::PlanePath::CornerReplicate>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|