This file is indexed.

/usr/share/perl5/Math/PlanePath/DragonRounded.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=DragonRounded --lines --scale=10
# math-image --path=DragonRounded,arms=4 --all --output=numbers_dash --size=132x60
#


package Math::PlanePath::DragonRounded;
use 5.004;
use strict;
#use List::Util 'min','max';
*min = \&Math::PlanePath::_min;
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest',
  'floor';
use Math::PlanePath::Base::Digits
  'round_down_pow';
use Math::PlanePath::DragonMidpoint;

# uncomment this to run the ### lines
#use Smart::Comments;


use constant n_start => 0;
use constant parameter_info_array => [ { name      => 'arms',
                                         share_key => 'arms_4',
                                         display   => 'Arms',
                                         type      => 'integer',
                                         minimum   => 1,
                                         maximum   => 4,
                                         default   => 1,
                                         width     => 1,
                                         description => 'Arms',
                                       } ];

{
  my @x_negative_at_n = (undef, 8,5,2,2);
  sub x_negative_at_n {
    my ($self) = @_;
    return $x_negative_at_n[$self->{'arms'}];
  }
}
{
  my @y_negative_at_n = (undef, 26,17,8,3);
  sub y_negative_at_n {
    my ($self) = @_;
    return $y_negative_at_n[$self->{'arms'}];
  }
}
use constant sumabsxy_minimum  => 1;
use constant absdiffxy_minimum => 1; # X=Y doesn't occur
use constant rsquared_minimum  => 1; # minimum X=1,Y=0

use constant dx_minimum => -1;
use constant dx_maximum => 1;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
*_UNDOCUMENTED__dxdy_list = \&Math::PlanePath::_UNDOCUMENTED__dxdy_list_eight;
use constant dsumxy_minimum => -2; # diagonals
use constant dsumxy_maximum => 2;
use constant ddiffxy_minimum => -2;
use constant ddiffxy_maximum => 2;
use constant dir_maximum_dxdy => (1,-1); # South-East


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);
  $self->{'arms'} = max(1, min(4, $self->{'arms'} || 1));
  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### DragonRounded n_to_xy(): $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n, $n); }

  my $frac;
  {
    my $int = int($n);
    $frac = $n - $int;
    $n = $int; # BigFloat int() gives BigInt, use that
  }
  ### $frac

  my $zero = ($n * 0);  # inherit bignum 0

  # arm as initial rotation
  my $rot = _divrem_mutate ($n, $self->{'arms'});

  # two points per edge
  my $x_offset = _divrem_mutate ($n, 2);

  # ENHANCE-ME: sx,sy just from len=3*2**level
  my @digits;
  my @sx;
  my @sy;
  {
    my $sx = $zero + 3;
    my $sy = $zero;
    while ($n) {
      push @digits, ($n % 2);
      push @sx, $sx;
      push @sy, $sy;
      $n = int($n/2);

      # (sx,sy) + rot+90(sx,sy)
      ($sx,$sy) = ($sx - $sy,
                   $sy + $sx);
    }
  }

  ### @digits
  my $rev = 0;
  my $x = $zero;
  my $y = $zero;
  my $above_low_zero = 0;

  for (my $i = $#digits; $i >= 0; $i--) {     # high to low
    my $digit = $digits[$i];
    my $sx = $sx[$i];
    my $sy = $sy[$i];
    ### at: "$x,$y  $digit   side $sx,$sy"
    ### $rot

    if ($rot & 2) {
      ($sx,$sy) = (-$sx,-$sy);
    }
    if ($rot & 1) {
      ($sx,$sy) = (-$sy,$sx);
    }
    ### rotated side: "$sx,$sy"

    if ($rev) {
      if ($digit) {
        $x += -$sy;
        $y += $sx;
        ### rev add to: "$x,$y next is still rev"
      } else {
        $above_low_zero = $digits[$i+1];
        $rot ++;
        $rev = 0;
        ### rev rot, next is no rev ...
      }
    } else {
      if ($digit) {
        $rot ++;
        $x += $sx;
        $y += $sy;
        $rev = 1;
        ### plain add to: "$x,$y next is rev"
      } else {
        $above_low_zero = $digits[$i+1];
      }
    }
  }

  # Digit above the low zero is the direction of the next turn, 0 for left,
  # 1 for right, and that determines the y_offset to apply to go across
  # towards the next edge.  When original input $n is odd, which means
  # $x_offset 0 at this point, there's no y_offset as going along the edge
  # not across the vertex.
  #
  my $y_offset = ($x_offset ? ($above_low_zero ? -$frac : $frac)
                  : 0);
  $x_offset = $frac + 1 + $x_offset;

  ### final: "$x,$y  rot=$rot  above_low_zero=$above_low_zero   offset=$x_offset,$y_offset"
  if ($rot & 2) {
    ($x_offset,$y_offset) = (-$x_offset,-$y_offset);  # rotate 180
  }
  if ($rot & 1) {
    ($x_offset,$y_offset) = (-$y_offset,$x_offset);  # rotate +90
  }
  $x = $x_offset + $x;
  $y = $y_offset + $y;
  ### rotated offset: "$x_offset,$y_offset   return $x,$y"
  return ($x,$y);
}

my @yx_rtom_dx = ([undef,     1,     1, undef,     1,     1],
                  [    0, undef, undef,     1, undef, undef],
                  [    0, undef, undef,     1, undef, undef],
                  [undef,     1,     1, undef,     1,     1],
                  [    1, undef, undef,     0, undef, undef],
                  [    1, undef, undef,     0, undef, undef]);

my @yx_rtom_dy = ([undef,     0,     0, undef,    -1,    -1],
                  [    0, undef, undef,     0, undef, undef],
                  [    0, undef, undef,     0, undef, undef],
                  [undef,    -1,    -1, undef,     0,     0],
                  [    0, undef, undef,     0, undef, undef],
                  [    0, undef, undef,     0, undef, undef]);

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### DragonRounded xy_to_n(): "$x, $y"

  $x = round_nearest($x);
  $y = round_nearest($y);

  my $x6 = $x % 6;
  my $y6 = $y % 6;
  my $dx = $yx_rtom_dx[$y6][$x6];  defined $dx or return undef;
  my $dy = $yx_rtom_dy[$y6][$x6];  defined $dy or return undef;

  # my $n = $self->Math::PlanePath::DragonMidpoint::xy_to_n
  #   ($x - floor($x/3) - $dx,
  #    $y - floor($y/3) - $dy);
  # ### dxy: "$dx, $dy"
  # ### to: ($x - floor($x/3) - $dx).", ".($y - floor($y/3) - $dy)
  # ### $n

  return $self->Math::PlanePath::DragonMidpoint::xy_to_n
    ($x - floor($x/3) - $dx,
     $y - floor($y/3) - $dy);
}

# level 21  n=1048576 .. 2097152
#   min 1052677 0b100000001000000000101   at -1026,1  factor 1.99610706057474
#   n=2^20 min r^2=2^20 plus a bit
#   maybe ...
#
# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### DragonRounded rect_to_n_range(): "$x1,$y1  $x2,$y2  arms=$self->{'arms'}"

  $x1 = abs($x1);
  $x2 = abs($x2);
  $y1 = abs($y1);
  $y2 = abs($y2);
  my $xmax = int(max($x1,$x2) / 3);
  my $ymax = int(max($y1,$y2) / 3);
  return (0,
          ($xmax*$xmax + $ymax*$ymax + 1) * $self->{'arms'} * 16);
}

#------------------------------------------------------------------------------

# each 2 points is a line segment, so 2*DragonMidpoint
# level 0  0--1
# level 1  0--1 2--3
# level 2  0--1 2--3 4--5 6--7
#
# arms=4
# level 0  0--3  /  1--4  /  2--5  /  3--7
# level 1  
#
# 2^level segments
# 2*2^level rounded points
# arms*2^level when multi-arm
# numbered starting 0
#
sub level_to_n_range {
  my ($self, $level) = @_;
  return (0, 2**($level+1) * $self->{'arms'} - 1);
}

sub n_to_level {
  my ($self, $n) = @_;
  if ($n < 0) { return undef; }
  if (is_infinite($n)) { return $n; }
  $n = round_nearest($n);
  _divrem_mutate ($n, 2*$self->{'arms'});
  my ($pow, $exp) = round_down_pow ($n, 2);
  return $exp + 1;
}

#------------------------------------------------------------------------------
1;
__END__

=for stopwords eg Ryde Dragon Math-PlanePath Nlevel Heighway Harter et al vertices multi-arm Xadj,Yadj OEIS Xadj

=head1 NAME

Math::PlanePath::DragonRounded -- dragon curve, with rounded corners

=head1 SYNOPSIS

 use Math::PlanePath::DragonRounded;
 my $path = Math::PlanePath::DragonRounded->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This is a version of the dragon curve by Harter, Heighway, et al, done with
two points per edge and skipping vertices so as to make rounded-off corners,

                          17-16              9--8                 6
                         /     \           /     \
                       18       15       10        7              5
                        |        |        |        |
                       19       14       11        6              4
                         \        \     /           \
                          20-21    13-12              5--4        3
                               \                          \
                                22                          3     2
                                 |                          |
                                23                          2     1
                               /                          /
        33-32             25-24                    .  0--1       Y=0
       /     \           /
     34       31       26                                        -1
      |        |        |
     35       30       27                                        -2
       \        \     /
        36-37    29-28    44-45                                  -3
             \           /     \
              38       43       46                               -4
               |        |        |
              39       42       47                               -5
                \     /        /
                 40-41    49-48                                  -6
                         /
                       50                                        -7
                        |
                       ...


      ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
    -15-14-13-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3 ...

The two points on an edge have one of X or Y a multiple of 3 and the other Y
or X at 1 mod 3 or 2 mod 3.  For example N=19 and N=20 are on the X=-9 edge
(a multiple of 3), and at Y=4 and Y=5 (1 and 2 mod 3).

The "rounding" of the corners ensures that for example N=13 and N=21 don't
touch as they approach X=-6,Y=3.  The curve always approaches vertices like
this and never crosses itself.

=head2 Arms

The dragon curve fills a quarter of the plane and four copies mesh together
rotated by 90, 180 and 270 degrees.  The C<arms> parameter can choose 1 to 4
curve arms, successively advancing.  For example C<arms =E<gt> 4> gives


                36-32             59-...          6
               /     \           /
    ...      40       28       55                 5
     |        |        |        |
    56       44       24       51                 4
      \     /           \        \
       52-48    13--9    20-16    47-43           3
               /     \        \        \
             17        5       12       39        2
              |        |        |        |
             21        1        8       35        1
            /                 /        /
       29-25     6--2     0--4    27-31       <- Y=0
      /        /                 /
    33       10        3       23                -1
     |        |        |        |
    37       14        7       19                -2
      \        \        \     /
       41-45    18-22    11-15    50-54          -3
            \        \           /     \
             49       26       46       58       -4
              |        |        |        |
             53       30       42       ...      -5
            /           \     /
      ...-57             34-38                   -6



     ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
    -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6

With 4 arms like this all 3x3 blocks are visited, using 4 out of 9 points in
each.

=head2 Midpoint

The points of this rounded curve correspond to the C<DragonMidpoint> with a
little squish to turn each 6x6 block into a 4x4 block.  For instance in the
following N=2,3 are pushed to the left, and N=6 through N=11 shift down and
squashes up horizontally.

     DragonRounded               DragonMidpoint

        9--8                     
       /    \
     10      7                     9---8         
      |      |                     |   |         
     11      6                    10   7         
    /         \                    |   |         
               5--4      <=>     -11   6---5---4 
                   \                           | 
                    3                          3 
                    |                          | 
                    2                          2 
                   /                           | 
             . 0--1                        0---1 
                            

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::DragonRounded-E<gt>new ()>

=item C<$path = Math::PlanePath::DragonRounded-E<gt>new (arms =E<gt> $aa)>

Create and return a new path object.

The optional C<arms> parameter makes a multi-arm curve.  The default is 1
for just one arm.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

=item C<$n = $path-E<gt>n_start()>

Return 0, the first N in the path.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, 2 * 2**$level - 1)>, or for multiple arms return C<(0, $arms *
2 * 2**$level - 1)>.

There are 2^level segments comprising the dragon, or arms*2^level when
multiple arms.  Each has 2 points in this rounded curve, numbered starting
from 0.

=back

=head1 FORMULAS

=head2 X,Y to N

The correspondence with the C<DragonMidpoint> noted above allows the method
from that module to be used for the rounded C<xy_to_n()>.

The correspondence essentially reckons each point on the rounded curve as
the midpoint of a dragon curve of one greater level of detail, and segments
on 45-degree angles.

The coordinate conversion turns each 6x6 block of C<DragonRounded> to a 4x4
block of C<DragonMidpoint>.  There's no rotations or anything.

    Xmid = X - floor(X/3) - Xadj[X%6][Y%6]
    Ymid = Y - floor(Y/3) - Yadj[X%6][Y%6]

    N = DragonMidpoint n_to_xy of Xmid,Ymid

    Xadj[][] is a 6x6 table of 0 or 1 or undef
    Yadj[][] is a 6x6 table of -1 or 0 or undef

The Xadj,Yadj tables are a handy place to notice X,Y points not on the
C<DragonRounded> style 4 of 9 points.  Or 16 of 36 points since the tables
are 6x6.

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path include the various C<DragonCurve> sequences at even N, and in addition

=over

L<http://oeis.org/A152822> (etc)

=back

    A152822   abs(dX), so 0=vertical,1=not, being 1,1,0,1 repeating
    A166486   abs(dY), so 0=horizontal,1=not, being 0,1,1,1 repeating

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::DragonCurve>,
L<Math::PlanePath::DragonMidpoint>,
L<Math::PlanePath::TerdragonRounded>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014 Kevin Ryde

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut