/usr/share/perl5/Math/PlanePath/DragonCurve.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 | # Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# math-image --path=DragonCurve --lines --scale=20
# math-image --path=DragonCurve --all --scale=10
# math-image --path=DragonCurve --output=numbers_dash
#
# math-image --wx --path=DragonCurve,arms=4 --expression='i<16384?i:0'
#
# cf A088431 run lengths of dragon turns
# A007400 cont frac 1/2^1 + 1/2^2 + 1/2^4 + 1/2^8 + ... 1/2^(2^n)
# = 0.8164215090218931...
# 2,4,6 values
# a(0)=0,
# a(1)=1,
# a(2)=4,
# a(8n) = a(8n+3) = 2,
# a(8n+4) = a(8n+7) = a(16n+5) = a(16n+14) = 4,
# a(16n+6) = a(16n+13) = 6,
# a(8n+1) = a(4n+1),
# a(8n+2) = a(4n+2)
#
# A060833 not adding to 2^k+2,
# superset of positions of left turns ...
#
# A166242 double or half according to dragon turn
#
# connection points
# N = 26 = 11010
# = 27 = 11011
# N = 51 = 110011 = (3*16^k-1)/15 -> 1/5
# = 52 = 110100
# N = 101 = 1100101
# = 102 = 1100110 = 2*(3*16^k-1)/15 -> 2/5
# N
# Martin Gardner, "The Dragon Curve and Other Problems (Mathematical
# Games)", Scientific American, March 1967 (addenda from readers April and
# July).
#
# Reprinted in "Mathematical Magic Show", 1978.
# Chandler Davis and Donald Knuth,
# "Number Representations and Dragon Curves - I", C. Davis & D. E. Knuth,
# Journal Recreational Math., volume 3, number 2 (April 1970), pages 66-81.
# 16 pages
#
# Chandler Davis and Donald Knuth,
# "Number Representations and Dragon Curves - II", C. Davis & D. E. Knuth,
# Journal Recreational Math., volume 3, number 3 (July 1970), pages 133-149.
# 17 pages
#
# Revised in "Selected Papers on Fun and Games", 2010, pages 571-603 with
# addendum pages 603-614.
# http://trove.nla.gov.au/version/50039930
# 32+12=44 pages
# Sze-Man Ngai and Nhu Nguyen, "The Heighway Dragon Revisited", Discrete and
# Computational Geometry, May 2003 volume 29, issue 4, pages 603-623
# http://www.math.nmsu.edu/~nnguyen/23paper.ps
package Math::PlanePath::DragonCurve;
use 5.004;
use strict;
use List::Util 'min'; # 'max'
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
'Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'round_down_pow',
'bit_split_lowtohigh',
'digit_split_lowtohigh';
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
use Math::PlanePath::DragonMidpoint;
# uncomment this to run the ### lines
# use Smart::Comments;
use constant n_start => 0;
use constant parameter_info_array => [ { name => 'arms',
share_key => 'arms_4',
display => 'Arms',
type => 'integer',
minimum => 1,
maximum => 4,
default => 1,
width => 1,
description => 'Arms',
} ];
{
my @x_negative_at_n = (undef, 5,5,5,6);
sub x_negative_at_n {
my ($self) = @_;
return $x_negative_at_n[$self->{'arms'}];
}
}
{
my @y_negative_at_n = (undef, 14,11,8,7);
sub y_negative_at_n {
my ($self) = @_;
return $y_negative_at_n[$self->{'arms'}];
}
}
{
my @_UNDOCUMENTED__dxdy_list_at_n = (undef, 5, 5, 5, 3);
sub _UNDOCUMENTED__dxdy_list_at_n {
my ($self) = @_;
return $_UNDOCUMENTED__dxdy_list_at_n[$self->{'arms'}];
}
}
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new(@_);
$self->{'arms'} = max(1, min(4, $self->{'arms'} || 1));
return $self;
}
{
# sub state_string {
# my ($state) = @_;
# my $digit = $state & 3; $state >>= 2;
# my $rot = $state & 3; $state >>= 2;
# my $rev = $state & 1; $state >>= 1;
# return "rot=$rot rev=$rev (digit=$digit)";
# }
# generated by tools/dragon-curve-table.pl
# next_state length 32
my @next_state = (12,16, 4,16, 0,20, 8,20, 4,24,12,24, 8,28, 0,28,
0,20, 0,28, 4,24, 4,16, 8,28, 8,20, 12,16,12,24);
my @digit_to_x = ( 0, 0, 1, 1, 0, 1, 1, 0, 0, 0,-1,-1, 0,-1,-1, 0,
0, 1, 1, 2, 0, 0,-1,-1, 0,-1,-1,-2, 0, 0, 1, 1);
my @digit_to_y = ( 0,-1,-1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0,-1,-1,
0, 0, 1, 1, 0, 1, 1, 2, 0, 0,-1,-1, 0,-1,-1,-2);
my @digit_to_dxdy = ( 1, 0,undef,undef, 0, 1,undef,undef, -1, 0,undef,undef, 0,-1,undef,undef,
1, 0,undef,undef, 0, 1,undef,undef, -1, 0,undef,undef, 0,-1);
sub n_to_xy {
my ($self, $n) = @_;
### DragonCurve n_to_xy(): $n
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n, $n); }
my $int = int($n); # integer part
$n -= $int; # $n = fraction part
my $zero = ($int * 0); # inherit bignum 0
my $arm = _divrem_mutate ($int, $self->{'arms'});
my @digits = digit_split_lowtohigh($int,4);
### @digits
# initial state from rotation by arm and number of digits
my $state = ((scalar(@digits) + $arm) & 3) << 2;
my $len = (2+$zero) ** $#digits;
my $x = $zero;
my $y = $zero;
foreach my $digit (reverse @digits) { # high to low
### at: "x=$x,y=$y len=$len digit=$digit state=$state"
# ### state is: state_string($state)
$state += $digit;
$x += $len * $digit_to_x[$state];
$y += $len * $digit_to_y[$state];
$state = $next_state[$state];
$len /= 2;
}
### final: "x=$x y=$y state=$state"
# ### state is: state_string($state)
### final: "frac dx=$digit_to_dxdy[$state], dy=$digit_to_dxdy[$state+1]"
return ($n * $digit_to_dxdy[$state] + $x,
$n * $digit_to_dxdy[$state+1] + $y);
}
}
{
# generated by tools/dragon-curve-dxdy.pl
# next_state length 32
my @next_state = ( 0, 6,20, 2, 4,10,24, 6, 8,14,28,10, 12, 2,16,14,
0,22,20,18, 4,26,24,22, 8,30,28,26, 12,18,16,30);
my @state_to_dxdy = ( 1, 0,-1, 1, 0, 1,-1,-1, -1, 0, 1,-1, 0,-1, 1, 1,
1, 0,-1,-1, 0, 1, 1,-1, -1, 0, 1, 1, 0,-1,-1, 1);
sub n_to_dxdy {
my ($self, $n) = @_;
### n_to_dxdy(): $n
my $int = int($n);
$n -= $int; # $n fraction part
### $int
### $n
my $state = 4 * _divrem_mutate ($int, $self->{'arms'});
### arm as initial state: $state
foreach my $bit (reverse bit_split_lowtohigh($int)) { # high to low
$state = $next_state[$state + $bit];
}
$state &= 0x1C; # mask out "prevbit" from state, leaving state==0 mod 4
### final state: $state
### dx: $state_to_dxdy[$state]
### dy: $state_to_dxdy[$state+1],
### frac dx: $state_to_dxdy[$state+2],
### frac dy: $state_to_dxdy[$state+3],
return ($state_to_dxdy[$state] + $n * $state_to_dxdy[$state+2],
$state_to_dxdy[$state+1] + $n * $state_to_dxdy[$state+3]);
}
}
# point N=2^(2k) at XorY=+/-2^k radius 2^k
# N=2^(2k-1) at X=Y=+/-2^(k-1) radius sqrt(2)*2^(k-1)
# radius = sqrt(2^level)
# R(l)-R(l-1) = sqrt(2^level) - sqrt(2^(level-1))
# = sqrt(2^level) * (1 - 1/sqrt(2))
# about 0.29289
#
my @try_dx = (0,0,-1,-1);
my @try_dy = (0,1,1,0);
sub xy_to_n {
return scalar((shift->xy_to_n_list(@_))[0]);
}
sub xy_to_n_list {
my ($self, $x, $y) = @_;
### DragonCurve xy_to_n(): "$x, $y"
$x = round_nearest($x);
$y = round_nearest($y);
if (is_infinite($x)) {
return $x; # infinity
}
if (is_infinite($y)) {
return $y; # infinity
}
if ($x == 0 && $y == 0) {
return (0 .. $self->arms_count - 1);
}
my @n_list;
my $xm = $x+$y; # rotate -45 and mul sqrt(2)
my $ym = $y-$x;
foreach my $dx (0,-1) {
foreach my $dy (0,1) {
my $t = $self->Math::PlanePath::DragonMidpoint::xy_to_n
($xm+$dx, $ym+$dy);
next unless defined $t;
my ($tx,$ty) = $self->n_to_xy($t)
or next;
if ($tx == $x && $ty == $y) {
### found: $t
if (@n_list && $t < $n_list[0]) {
unshift @n_list, $t;
} else {
push @n_list, $t;
}
if (@n_list == 2) {
return @n_list;
}
}
}
}
return @n_list;
}
#------------------------------------------------------------------------------
sub xy_is_visited {
my ($self, $x, $y) = @_;
my $arms_count = $self->{'arms'};
if ($arms_count == 4) {
# yes, whole plane visited
return 1;
}
my $xm = $x+$y;
my $ym = $y-$x;
{
my $arm = Math::PlanePath::DragonMidpoint::_xy_to_arm($xm,$ym);
if ($arm < $arms_count) {
# yes, segment $xm,$ym is on the desired arms
return 1;
}
if ($arm == 2 && $arms_count == 1) {
# no, segment $xm,$ym is on arm 2, which means its opposite is only on
# arm 1,2,3 not arm 0 so arms_count==1 cannot be visited
return 0;
}
}
return (Math::PlanePath::DragonMidpoint::_xy_to_arm($xm-1,$ym+1)
< $arms_count);
}
#------------------------------------------------------------------------------
# f = (1 - 1/sqrt(2) = .292
# 1/f = 3.41
# N = 2^level
# Rend = sqrt(2)^level
# Rmin = Rend / 2 maybe
# Rmin^2 = (2^level)/4
# N = 4 * Rmin^2
#
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### DragonCurve rect_to_n_range(): "$x1,$y1 $x2,$y2"
my $xmax = int(max(abs($x1),abs($x2)));
my $ymax = int(max(abs($y1),abs($y2)));
return (0,
$self->{'arms'} * ($xmax*$xmax + $ymax*$ymax + 1) * 7);
}
# Not quite right yet ...
#
# sub rect_to_n_range {
# my ($self, $x1,$y1, $x2,$y2) = @_;
# ### DragonCurve rect_to_n_range(): "$x1,$y1 $x2,$y2"
#
#
# my ($length, $level_limit) = round_down_pow
# ((max(abs($x1),abs($x2))**2 + max(abs($y1),abs($y2))**2 + 1) * 7,
# 2);
# $level_limit += 2;
# ### $level_limit
#
# if (is_infinite($level_limit)) {
# return ($level_limit,$level_limit);
# }
#
# $x1 = round_nearest ($x1);
# $y1 = round_nearest ($y1);
# $x2 = round_nearest ($x2);
# $y2 = round_nearest ($y2);
# ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
# ($y1,$y2) = ($y2,$y1) if $y1 > $y2;
# ### sorted range: "$x1,$y1 $x2,$y2"
#
#
# my @xend = (0, 1);
# my @yend = (0, 0);
# my @xmin = (0, 0);
# my @xmax = (0, 1);
# my @ymin = (0, 0);
# my @ymax = (0, 0);
# my @sidemax = (0, 1);
# my $extend = sub {
# my ($i) = @_;
# ### extend(): $i
# while ($i >= $#xend) {
# ### extend from: $#xend
# my $xend = $xend[-1];
# my $yend = $yend[-1];
# ($xend,$yend) = ($xend-$yend, # rotate +45
# $xend+$yend);
# push @xend, $xend;
# push @yend, $yend;
# my $xmax = $xmax[-1];
# my $xmin = $xmin[-1];
# my $ymax = $ymax[-1];
# my $ymin = $ymin[-1];
# ### assert: $xmax >= $xmin
# ### assert: $ymax >= $ymin
#
# # ### at: "end=$xend,$yend $xmin..$xmax $ymin..$ymax"
# push @xmax, max($xmax, $xend + $ymax);
# push @xmin, min($xmin, $xend + $ymin);
#
# push @ymax, max($ymax, $yend - $xmin);
# push @ymin, min($ymin, $yend - $xmax);
#
# push @sidemax, max ($xmax[-1], -$xmin[-1],
# $ymax[-1], -$ymin[-1],
# abs($xend),
# abs($yend));
# }
# ### @sidemax
# };
#
# my $rect_dist = sub {
# my ($x,$y) = @_;
# my $xd = ($x < $x1 ? $x1 - $x
# : $x > $x2 ? $x - $x2
# : 0);
# my $yd = ($y < $y1 ? $y1 - $y
# : $y > $y2 ? $y - $y2
# : 0);
# return max($xd,$yd);
# };
#
# my $arms = $self->{'arms'};
# ### $arms
# my $n_lo;
# {
# my $top = 0;
# for (;;) {
# ARM_LO: foreach my $arm (0 .. $arms-1) {
# my $i = 0;
# my @digits;
# if ($top > 0) {
# @digits = ((0)x($top-1), 1);
# } else {
# @digits = (0);
# }
#
# for (;;) {
# my $n = 0;
# foreach my $digit (reverse @digits) { # high to low
# $n = 2*$n + $digit;
# }
# $n = $n*$arms + $arm;
# my ($nx,$ny) = $self->n_to_xy($n);
# my $nh = &$rect_dist ($nx,$ny);
#
# ### lo consider: "i=$i digits=".join(',',reverse @digits)." is n=$n xy=$nx,$ny nh=$nh"
#
# if ($i == 0 && $nh == 0) {
# ### lo found inside: $n
# if (! defined $n_lo || $n < $n_lo) {
# $n_lo = $n;
# }
# next ARM_LO;
# }
#
# if ($i == 0 || $nh > $sidemax[$i+2]) {
# ### too far away: "nxy=$nx,$ny nh=$nh vs ".$sidemax[$i+2]." at i=$i"
#
# while (++$digits[$i] > 1) {
# $digits[$i] = 0;
# if (++$i <= $top) {
# ### backtrack up ...
# } else {
# ### not found within this top and arm, next arm ...
# next ARM_LO;
# }
# }
# } else {
# ### lo descend ...
# ### assert: $i > 0
# $i--;
# $digits[$i] = 0;
# }
# }
# }
#
# # if an $n_lo was found on any arm within this $top then done
# if (defined $n_lo) {
# last;
# }
#
# ### lo extend top ...
# if (++$top > $level_limit) {
# ### nothing below level limit ...
# return (1,0);
# }
# &$extend($top+3);
# }
# }
#
# my $n_hi = 0;
# ARM_HI: foreach my $arm (reverse 0 .. $arms-1) {
# &$extend($level_limit+2);
# my @digits = ((1) x $level_limit);
# my $i = $#digits;
# for (;;) {
# my $n = 0;
# foreach my $digit (reverse @digits) { # high to low
# $n = 2*$n + $digit;
# }
#
# $n = $n*$arms + $arm;
# my ($nx,$ny) = $self->n_to_xy($n);
# my $nh = &$rect_dist ($nx,$ny);
#
# ### hi consider: "arm=$arm i=$i digits=".join(',',reverse @digits)." is n=$n xy=$nx,$ny nh=$nh"
#
# if ($i == 0 && $nh == 0) {
# ### hi found inside: $n
# if ($n > $n_hi) {
# $n_hi = $n;
# next ARM_HI;
# }
# }
#
# if ($i == 0 || $nh > $sidemax[$i+2]) {
# ### too far away: "$nx,$ny nh=$nh vs ".$sidemax[$i+2]." at i=$i"
#
# while (--$digits[$i] < 0) {
# $digits[$i] = 1;
# if (++$i < $level_limit) {
# ### hi backtrack up ...
# } else {
# ### hi nothing within level limit for this arm ...
# next ARM_HI;
# }
# }
#
# } else {
# ### hi descend
# ### assert: $i > 0
# $i--;
# $digits[$i] = 1;
# }
# }
# }
#
# if ($n_hi == 0) {
# ### oops, lo found but hi not found
# $n_hi = $n_lo;
# }
#
# return ($n_lo, $n_hi);
# }
#------------------------------------------------------------------------------
# level ranges
# eg. arms=3 0 .. 3*2^k by 3s
# 1 .. 3*2^k+1 by 3s
# 2 .. 3*2^k+2 by 3s k=3 n_hi=26
#
# eg. arms=4 3 .. 4*2^k+3 by 4s
# k=1 n_hi=11
# k=2 n_hi=19
# k=3 n_hi=35
#
sub level_to_n_range {
my ($self, $level) = @_;
return (0, 2**$level * $self->{'arms'} + ($self->{'arms'}-1));
}
# 0 .. 2^level
# -1 .. 2^level-1
# level = round_up_pow(N)
# eg N=13 -> 2^4=16 level=4
# level = round_down_pow(N-1) + 1
#
sub n_to_level {
my ($self, $n) = @_;
if ($n < 0) { return undef; }
if (is_infinite($n)) { return $n; }
$n = round_nearest($n);
_divrem_mutate ($n, $self->{'arms'});
my ($pow, $exp) = round_down_pow ($n-1, 2);
return $exp + 1;
}
#------------------------------------------------------------------------------
{
my @_UNDOCUMENTED_level_to_left_line_boundary = (1,2,4);
sub _UNDOCUMENTED_level_to_left_line_boundary {
my ($self, $level) = @_;
if ($level < 0) { return undef; }
if ($level <= 2) { return $_UNDOCUMENTED_level_to_left_line_boundary[$level]; }
if (is_infinite($level)) { return $level; }
my $l0 = 2;
my $l1 = 4;
my $l2 = 8;
foreach (4 .. $level) {
($l2,$l1,$l0) = ($l2 + 2*$l0, $l2, $l1);
}
return $l2;
}
}
{
my @level_to_right_line_boundary = (1,2,4,8,undef);
sub _UNDOCUMENTED_level_to_right_line_boundary {
my ($self, $level) = @_;
if ($level < 0) { return undef; }
if ($level <= 3) { return $level_to_right_line_boundary[$level]; }
if (is_infinite($level)) { return $level; }
my $r0 = 2;
my $r1 = 4;
my $r2 = 8;
my $r3 = 16;
foreach (5 .. $level) {
($r3,$r2,$r1,$r0) = (2*$r3 - $r2 + 2*$r1 - 2*$r0, $r3, $r2, $r1);
}
return $r3;
}
}
sub _UNDOCUMENTED_level_to_line_boundary {
my ($self, $level) = @_;
if ($level < 0) { return undef; }
return $self->_UNDOCUMENTED_level_to_right_line_boundary($level+1);
}
sub _UNDOCUMENTED_level_to_u_left_line_boundary {
my ($self, $level) = @_;
if ($level < 0) { return undef; }
return ($level == 0 ? 3
: $self->_UNDOCUMENTED_level_to_right_line_boundary($level) + 4);
}
sub _UNDOCUMENTED_level_to_u_right_line_boundary {
my ($self, $level) = @_;
if ($level < 0) { return undef; }
return ($self->_UNDOCUMENTED_level_to_right_line_boundary($level)
+ $self->_UNDOCUMENTED_level_to_right_line_boundary($level+1));
}
sub _UNDOCUMENTED_level_to_u_line_boundary {
my ($self, $level) = @_;
if ($level < 0) { return undef; }
return ($self->_UNDOCUMENTED_level_to_u_left_line_boundary($level)
+ $self->_UNDOCUMENTED_level_to_u_right_line_boundary($level));
}
sub _UNDOCUMENTED_level_to_enclosed_area {
my ($self, $level) = @_;
# A[k] = 2^(k-1) - B[k]/4
if ($level < 0) { return undef; }
if ($level == 0) { return 0; } # avoid 2**(-1)
return 2**($level-1) - $self->_UNDOCUMENTED_level_to_line_boundary($level) / 4;
}
*_UNDOCUMENTED_level_to_doubled_points = \&_UNDOCUMENTED_level_to_enclosed_area;
{
my @_UNDOCUMENTED_level_to_single_points = (2,3,5);
sub _UNDOCUMENTED_level_to_single_points {
my ($self, $level) = @_;
if ($level < 0) { return undef; }
if ($level <= 2) { return $_UNDOCUMENTED_level_to_single_points[$level]; }
if (is_infinite($level)) { return $level; }
my $l0 = 3;
my $l1 = 5;
my $l2 = 9;
foreach (4 .. $level) {
($l2,$l1,$l0) = ($l2 + 2*$l0, $l2, $l1);
}
return $l2;
}
}
{
my @_UNDOCUMENTED_level_to_enclosed_area_join = (0,0,0,1);
sub _UNDOCUMENTED_level_to_enclosed_area_join {
my ($self, $level) = @_;
if ($level < 0) { return undef; }
if ($level <= 3) { return $_UNDOCUMENTED_level_to_enclosed_area_join[$level]; }
if (is_infinite($level)) { return $level; }
my ($j0,$j1,$j2,$j3) = @_UNDOCUMENTED_level_to_enclosed_area_join;
$j3 += $level*0;
foreach (4 .. $level) {
($j3,$j2,$j1,$j0) = (2*$j3 - $j2 + 2*$j1 - 2*$j0, $j3, $j2, $j1);
}
return $j3;
}
}
#------------------------------------------------------------------------------
# points visited
{
my @_UNDOCUMENTED_level_to_visited = (2, 3, 5, 9, 16);
sub _UNDOCUMENTED_level_to_visited {
my ($self, $level) = @_;
if ($level < 0) { return undef; }
if ($level <= $#_UNDOCUMENTED_level_to_visited) { return $_UNDOCUMENTED_level_to_visited[$level]; }
if (is_infinite($level)) { return $level; }
my ($p0,$p1,$p2,$p3,$p4) = @_UNDOCUMENTED_level_to_visited;
foreach (5 .. $level) {
($p4,$p3,$p2,$p1,$p0) = (4*$p4 - 5*$p3 + 4*$p2 - 6*$p1 + 4*$p0, $p4, $p3, $p2, $p1);
}
return $p4;
}
}
#------------------------------------------------------------------------------
{
my @_UNDOCUMENTED__n_segment_is_right_boundary
# R M A B C D F G H
# 1 2 3 4 5 6 7 8 9
= ([undef,1,3,1,6,7,9,3 ],
[undef,2,4,5,4,8,5,0,0,4 ]);
sub _UNDOCUMENTED__n_segment_is_right_boundary {
my ($self, $n) = @_;
if (is_infinite($n)) { return 0; }
unless ($n >= 0) { return 0; }
$n = int($n);
my $state = 1;
foreach my $bit (reverse bit_split_lowtohigh($n)) { # high to low
$state = $_UNDOCUMENTED__n_segment_is_right_boundary[$bit][$state]
|| return 0;
}
return 1;
}
}
1;
__END__
#------------------------------------------------------------------------------
# n_to_xy() old code based on i+1 multiply up.
#
# my @dir4_to_dx = (1,0,-1,0);
# my @dir4_to_dy = (0,1,0,-1);
#
# sub n_to_xy {
# my ($self, $n) = @_;
# ### DragonCurve n_to_xy(): $n
#
# if ($n < 0) { return; }
# if (is_infinite($n)) { return ($n, $n); }
#
# my $int = int($n); # integer part
# $n -= $int; # fraction part
# my $zero = ($int * 0); # inherit bignum 0
#
# # arm as initial rotation
# my $rot = _divrem_mutate ($int, $self->{'arms'});
#
# my @digits = bit_split_lowtohigh($int);
# ### @digits
#
# my @sx;
# my @sy;
# {
# my $sy = $zero; # inherit BigInt 0
# my $sx = $zero + 1; # inherit BigInt 1
# ### $sx
# ### $sy
#
# foreach (@digits) {
# push @sx, $sx;
# push @sy, $sy;
# # (sx,sy) + rot+90(sx,sy), is multiply (i+1)
# ($sx,$sy) = ($sx - $sy,
# $sy + $sx);
# }
# }
#
# my $rev = 0;
# my $x = $zero;
# my $y = $zero;
# while (defined (my $digit = pop @digits)) { # high to low
# my $sx = pop @sx;
# my $sy = pop @sy;
# ### at: "$x,$y $digit side $sx,$sy"
# ### $rot
#
# if ($rot & 2) {
# ($sx,$sy) = (-$sx,-$sy);
# }
# if ($rot & 1) {
# ($sx,$sy) = (-$sy,$sx);
# }
#
# if ($rev) {
# if ($digit) {
# $x -= $sy;
# $y += $sx;
# ### rev add to: "$x,$y next is still rev"
# } else {
# $rot ++;
# $rev = 0;
# }
# } else {
# if ($digit) {
# $rot ++;
# $x += $sx;
# $y += $sy;
# $rev = 1;
# ### add to: "$x,$y next is rev"
# }
# }
# }
#
# $rot &= 3;
# $x = $n * $dir4_to_dx[$rot] + $x;
# $y = $n * $dir4_to_dy[$rot] + $y;
#
# ### final: "$x,$y"
# return ($x,$y);
# }
# n_to_dxdy() by separate direction and frac next turn.
#
# my @dir4_to_dx = (1,0,-1,0);
# my @dir4_to_dy = (0,1,0,-1);
#
# sub n_to_dxdy {
# my ($self, $n) = @_;
# ### n_to_dxdy(): $n
#
# my $int = int($n);
# $n -= $int; # $n fraction part
# ### $int
# ### $n
#
# my $dir = _divrem_mutate ($int, $self->{'arms'});
# ### arm as initial dir: $dir
#
# my @digits = bit_split_lowtohigh($int);
# ### @digits
#
# my $prev = 0;
# foreach my $digit (reverse @digits) {
# $dir += ($digit != $prev);
# $prev = $digit;
# }
# $dir &= 3;
# my $dx = $dir4_to_dx[$dir];
# my $dy = $dir4_to_dy[$dir];
# ### $dx
# ### $dy
#
# if ($n) {
# ### apply fraction part: $n
#
# # maybe:
# # +/- $n as dx or dy
# # +/- (1-$n) as other dy or dx
#
# # strip any low 1-bits, and the 0-bit above them
# while (shift @digits) { }
#
# $dir += ($digits[0] ? -1 : 1); # bit above lowest 0-bit, 1=right,0=left
# $dir &= 3;
# $dx += $n*($dir4_to_dx[$dir] - $dx);
# $dy += $n*($dir4_to_dy[$dir] - $dy);
#
# # my $sign = ($digits[0] ? 1 : -1); # bit above lowest 0-bit
# # ($dx,$dy) = ($dx - $n*($dx - $sign*$dy),
# # $dy - $n*($dy + $sign*$dx));
#
# # my ($next_dx, $next_dy);
# # if ($digits[0]) { # bit above lowest 0-bit
# # # right
# # $next_dx = $dy;
# # $next_dy = -$dx;
# # } else {
# # # left
# # $next_dx = -$dy;
# # $next_dy = $dx;
# # }
# # ### $next_dx
# # ### $next_dy
# #
# # $dx += $n*($next_dx - $dx);
# # $dy += $n*($next_dy - $dy);
# }
#
# ### result: "$dx, $dy"
# return ($dx,$dy);
# }
#------------------------------------------------------------------------------
=for stopwords eg Ryde Dragon Math-PlanePath Heighway Harter et al vertices doublings OEIS Online Jorg Arndt fxtbook versa Nlevel Nlevel-1 Xlevel,Ylevel lengthways Lmax Lmin Wmin Wmax Ns Shallit Kmosek Seminumerical dX,dY bitwise lookup dx dy ie Xmid,Ymid Xlevel Xmid
=head1 NAME
Math::PlanePath::DragonCurve -- dragon curve
=head1 SYNOPSIS
use Math::PlanePath::DragonCurve;
my $path = Math::PlanePath::DragonCurve->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This is the dragon or paper folding curve by Heighway, Harter, et al.
=cut
# math-image --path=DragonCurve --all --output=numbers_dash --size=70x30
=pod
9----8 5---4 2
| | | |
10--11,7---6 3---2 1
| |
17---16 13---12 0---1 <- Y=0
| | |
18-19,15-14,22-23 -1
| | |
20--21,25-24 -2
|
26---27 -3
|
--32 29---28 -4
| |
31---30 -5
^ ^ ^ ^ ^ ^ ^
-5 -4 -3 -2 -1 X=0 1 ...
The curve visits "inside" X,Y points twice. The first of these is X=-2,Y=1
which is N=7 and also N=11. The segments N=6,7,8 and N=10,11,12 have
touched, but the path doesn't cross itself. The doubled vertices are all
like this, touching but not crossing and no edges repeating.
=head2 Arms
The curve fills a quarter of the plane and four copies mesh together
perfectly when rotated by 90, 180 and 270 degrees. The C<arms> parameter
can choose 1 to 4 curve arms successively advancing.
For example arms=4 begins as follows, with N=0,4,8,12,etc being the first
arm, N=1,5,9,13 the second, N=2,6,10,14 the third and N=3,7,11,15 the
fourth.
arms => 4
20 ------ 16
|
9 ------5/12 ----- 8 23
| | | |
17 --- 13/6 --- 0/1/2/3 --- 4/15 --- 19
| | | |
21 10 ----- 14/7 ----- 11
|
18 ------ 22
With four arms every X,Y point is visited twice (except the origin 0,0 where
all four begin) and every edge between the points is traversed once.
=head2 Level Angle
The first step N=1 is to the right along the X axis and the path then slowly
spirals anti-clockwise and progressively fatter. The end of each
replication is N=2^level which is at level*45 degrees around,
N X,Y angle radial dist
---- ----- ----- -----------
1 1,0 0 1
2 1,1 45 sqrt(2)
4 0,2 90 sqrt(4)=2
8 -2,2 135 sqrt(8)
16 -4,0 180 sqrt(16)=4
32 -4,-4 225 sqrt(32)
...
Here's points N=0 to N=2^9=512. "0" is the origin and "+" is N=512. Notice
it's spiralled around full-circle to angle 45 degrees up again, like the
initial N=2.
* * * *
* * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * *
* * * * * * * + * *
* * * * * * * *
* * * * * * *
* * * * * * * *
* * * * * *
* * * *
* * * * * * *
* * * * * * * * * *
* * * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * *
* * * * 0 * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * *
* * * * * * * *
At a power of two Nlevel=2^level for N=2 or higher, the curve always goes
upward from Nlevel-1 to Nlevel, and then goes to the left for Nlevel+1. For
example at N=16 the curve goes up N=15 to N=16, then left for N=16 to N=17.
Likewise at N=32, etc. The spiral curls around ever further but the
self-similar twist back means the Nlevel endpoint is always at this same
up/left orientation. See L</Total Turn> below for the net direction in
general.
=head2 Level Ranges
The X,Y extents of the path through to Nlevel=2^level can be expressed as a
"length" in the direction of the Xlevel,Ylevel endpoint and a "width"
across.
level even, so endpoint is a straight line
k = level/2
+--+ <- Lmax
| |
| E <- Lend = 2^k at Nlevel=2^level
|
+-----+
|
O | <- Lstart=0
| |
+--+ <- Lmin
^ ^
Wmin Wmax
Lmax = (7*2^k - 4)/6 if k even
(7*2^k - 2)/6 if k odd
Lmin = - (2^k - 1)/3 if k even
- (2^k - 2)/3 if k odd
Wmax = (2*2^k - 2) / 3 if k even
(2*2^k - 1) / 3 if k odd
Wmin = Lmin
For example level=2 is to Nlevel=2^2=4 and k=level/2=1 is odd so it measures
as follows,
4 <- Lmax = (7*2^1 - 2)/6 = 2
|
3--2
|
0--1 <- Lmin = -(2^1 - 2)/3 = 0
^ ^Wmax = (2*2^1 - 1)/3 = 1
|
Wmin = Lmin = 0
Or level=4 is to Nlevel=2^4=16 and k=4/2=2 is even. It measures as follows.
The lengthways "L" measures are in the direction of the N=16 endpoint and
the "W" measures are across.
9----8 5---4 <- Wmax = (2*2^2 - 2)/3 = 2
| | | |
10--11,7---6 3---2
| |
16 13---12 0---1
| |
15---14 <- Wmin = -(2^2 - 1)/3 = -1
^ ^Lmin = Wmin = -1
|
Lmax = (7*2^2 - 4)/6 = 4
The formulas are all integer values, but the fractions 7/6, 1/3 and 2/3 show
the limits as the level increases. If scaled so that length Lend=2^k is
reckoned as 1 unit then Lmax extends 1/6 past the end, Lmin and Wmin extend
1/3, and Wmax extends across 2/3.
+--------+ --
| - | 1/6 total length
|| | | = 1/6+1+1/3 = 3/2
|| E | --
|| |
|| |
| \ | 1
| \ |
| --\ |
| \ |
| ||
| O || --
| | ||
| | || 1/3
| ---- |
+--------+ --
1/3| 2/3
total width = 1/3+2/3 = 1
=head2 Paper Folding
The path is called a paper folding curve because it can be generated by
thinking of a long strip of paper folded in half repeatedly and then
unfolded so each crease is a 90 degree angle. The effect is that the curve
repeats in successive doublings turned by 90 degrees and reversed.
The first segment unfolds, pivoting at the "1",
2
-> |
unfold / |
===> | |
|
0-------1 0-------1
Then the same again with that L shape, pivoting at the "2", then after that
pivoting at the "4", and so on.
4
|
|
|
3--------2
2 |
| unfold ^ |
| ===> \_ |
| |
0------1 0--------1
It can be shown that this unfolding doesn't overlap itself but the corners
may touch, such as at the X=-2,Y=1 etc noted above.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::DragonCurve-E<gt>new ()>
=item C<$path = Math::PlanePath::DragonCurve-E<gt>new (arms =E<gt> $int)>
Create and return a new path object.
The optional C<arms> parameter can make 1 to 4 copies of the curve, each arm
successively advancing.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
Fractional positions give an X,Y position along a straight line between the
integer positions.
=item C<$n = $path-E<gt>xy_to_n ($x,$y)>
Return the point number for coordinates C<$x,$y>. If there's nothing at
C<$x,$y> then return C<undef>.
The curve visits an C<$x,$y> twice for various points (all the "inside"
points). The smaller of the two N values is returned.
=item C<@n_list = $path-E<gt>xy_to_n_list ($x,$y)>
Return a list of N point numbers for coordinates C<$x,$y>.
The origin 0,0 has C<arms_count()> many N since it's the starting point for
each arm. Other points have up to two Ns for a given C<$x,$y>. If arms=4
then every C<$x,$y> has exactly two Ns.
=item C<$n = $path-E<gt>n_start()>
Return 0, the first N in the path.
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<(0, 2**$level)>, or for multiple arms return C<(0, $arms *
2**$level + ($arms-1))>.
There are 2^level segments in a curve level, so 2^level+1 points numbered
from 0. For multiple arms there are arms*(2^level+1) points, numbered from
0 so n_hi = arms*(2^level+1)-1.
=back
=head1 FORMULAS
Various formulas for boundary length and area can be found in the author's
mathematical write-up
=over
L<http://user42.tuxfamily.org/dragon/index.html>
=back
=head2 X,Y to N
The current code uses the C<DragonMidpoint> C<xy_to_n()> by rotating -45
degrees and offsetting to the midpoints of the four edges around the target
X,Y. The C<DragonMidpoint> algorithm then gives four candidate N values and
those which convert back to the desired X,Y in the C<DragonCurve>
C<n_to_xy()> are the results for C<xy_to_n_list()>.
Xmid,Ymid = X+Y, Y-X # rotate -45 degrees
for dx = 0 or -1
for dy = 0 or 1
N candidate = DragonMidpoint xy_to_n(Xmid+dx,Ymid+dy)
Since there's at most two C<DragonCurve> Ns at a given X,Y the loop can stop
when two Ns are found.
Only the "leaving" edges will convert back to the target N, so only two of
the four edges actually need to be considered. Is there a way to identify
them? For arm 1 and 3 the leaving edges are up,down on odd points (meaning
sum X+Y odd) and right,left for even points (meaning sum X+Y even). But for
arm 2 and 4 it's the other way around. Without an easy way to determine the
arm this doesn't seem to help.
=head2 X,Y is Visited
Whether a given X,Y is visited by the curve can be determined from one or
two segments (rather then up to four for X,Y to N).
| S midpoint Xmid = X+Y
| Ymid = Y-X
*---T--X,Y--S---*
| T midpoint Xmid-1
| Ymid+1
Segment S is to the East of X,Y. The arm it falls on can be determined as
per L<Math::PlanePath::DragonMidpoint/X,Y to N>. Numbering arm(S) = 0,1,2,3
then
X,Y Visited
-----------
if arms_count()==4 yes # whole plane
if arm(S) < arms_count() yes
if arm(S)==2 and arms_count()==1 no
if arm(T) < arms_count() yes
This works because when two arms touch they approach and leave by a right
angle, without crossing. So two opposite segments S and T identify the two
possible arms coming to the X,Y point.
|
|
\
---- ----
\
|
|
An arm only touches its immediate neighbour, ie. arm-1 or arm+1 mod 4. This
means if arm(S)==2 then arm(T) can only be 1,2,3, not 0. So if
C<arms_count()> is 1 then arm(T) cannot be on the curve and no need to run
its segment check.
The only exception to the right-angle touching rule is at the origin X,Y =
0,0. In that case Xmid,Ymid = 0,0 is on the first arm and X,Y is correctly
determined to be on the curve. If S was not to the East but some other
direction away from X,Y then this wouldn't be so.
=head2 Turn
At each point the curve always turns either left or right, it never goes
straight ahead. The bit above the lowest 1-bit in N gives the turn
direction.
N = 0b...z10000 (possibly no trailing 0s)
z bit Turn
----- ----
0 left
1 right
For example N=12 is binary 0b1100, the lowest 1 bit is 0b_1__ and the bit
above that is a 1, which means turn to the right. Or N=18 is binary
0b10010, the lowest 1 is 0b___1_ and the bit above that is 0, so turn left
there.
This z bit can be picked out with some bit twiddling
$mask = $n & -$n; # lowest 1 bit, 000100..00
$z = $n & ($mask << 1); # the bit above it
$turn = ($z == 0 ? 'left' : 'right');
This sequence is in Knuth volume 2 "Seminumerical Algorithms" answer to
section 4.5.3 question 41 and is called the "dragon sequence". It's
expressed there recursively as
d(0) = 1 # unused, since first turn at N=1
d(2N) = d(N) # shift down looking for low 1-bit
d(4N+1) = 0 # bit above lowest 1-bit is 0
d(4N+3) = 1 # bit above lowest 1-bit is 1
=head2 Next Turn
The bits also give the turn after next by looking at the bit above the
lowest 0-bit. This works because 011..11 + 1 = 100..00 so the bit above the
lowest 0 becomes the bit above the lowest 1.
N = 0b...w01111 (possibly no trailing 1s)
w bit Next Turn
---- ---------
0 left
1 right
For example at N=12=0b1100 the lowest 0 is the least significant bit 0b___0,
and above that is a 0 too, so at N=13 the turn is to the left. Or for
N=18=0b10010 the lowest 0 is again the least significant bit, but above it
is a 1, so at N=19 the turn is to the right.
This too can be found with some bit twiddling, as for example
$mask = $n ^ ($n+1); # low one and below 000111..11
$w = $n & ($mask + 1); # the bit above there
$turn = ($w == 0 ? 'left' : 'right');
=head2 Total Turn
The total turn is the count of 0E<lt>-E<gt>1 transitions in the runs of bits
of N, which is the same as how many bit pairs of N (including overlaps) are
different so "01" or "10".
This can be seen from the segment replacements resulting from bits of N,
N bits from high to low, start in "plain" state
plain state
0 bit -> no change
1 bit -> count left, and go to reversed state
reversed state
0 bit -> count left, and go to plain state
1 bit -> no change
The 0 or 1 counts are from the different side a segment expands on in plain
or reversed state. Segment A to B expands to an "L" shape bend which is on
the right in plain state, but on the left in reversed state.
plain state reverse state
A = = = = B +
\ ^ 0bit / \
\ / turn / \ 1bit
0bit \ / 1bit left/ \
\ / turn / v
+ left A = = = = B
In both cases a rotate of +45 degrees keeps the very first segment of the
whole curve in a fixed direction (along the X axis), which means the
south-east slope shown is no-change. This is the 0 of plain or the 1 of
reversed. And the north-east slope which is the other new edge is a turn
towards the left.
It can be seen the "state" above is simply the previous bit, so the effect
for the bits of N is to count a left turn at each transition from 0-E<gt>1
or 1-E<gt>0. Initial "plain" state means the infinite zero bits at the high
end of N are included. For example N=9 is 0b1001 so three left turns for
curve direction south to N=10 (as can be seen in the diagram above).
1 00 1 N=9
^ ^ ^
+-+--+---three transitions,
so three left turns for direction south
The transitions can also be viewed as a count of how many runs of contiguous
0s or 1s, up to the highest 1-bit.
1 00 1 three blocks of 0s and 1s
X<Arndt, Jorg>X<fxtbook>This can be calculated by some bit twiddling with a
shift and xor to turn transitions into 1-bits which can then be counted, as
per Jorg Arndt (fxtbook section 1.31.3.1 "The Dragon Curve").
total turn = count_1_bits ($n ^ ($n >> 1))
The reversing structure of the curve shows up in the total turn at each
point. The total turns for a block of 2^N is followed by its own reversal
plus 1. For example,
------->
N=0 to N=7 0, 1, 2, 1, 2, 3, 2, 1
N=15 to N=8 1, 2, 3, 2, 3, 4, 3, 2 each is +1
<-------
=head2 N to dX,dY
C<n_to_dxdy()> is the "total turn" per above, or for fractional N then an
offset according to the "next turn" above. If using the bit twiddling
operators described then the two can be calculated separately.
The current C<n_to_dxdy()> code tries to support floating point or other
number types without bitwise XOR etc by processing bits high to low with a
state table which combines the calculations for total turn and next turn.
The state encodes
total turn 0 to 3
next turn 0 or 1
previous bit 0 or 1 (the bit above the current bit)
The "next turn" remembers the bit above lowest 0 seen so far (or 0
initially). The "total turn" counts 0-E<gt>1 or 1-E<gt>0 transitions. The
"previous bit" shows when there's a transition, or what bit is above when a
0 is seen. It also works not to have this previous bit in the state but
instead pick out two bits each time.
At the end of bit processing any "previous bit" in state is no longer needed
and can be masked out to lookup the final four dx, dy, next dx, next dy.
=head1 OEIS
The Dragon curve is in Sloane's Online Encyclopedia of Integer Sequences in
many forms (and see C<DragonMidpoint> for its forms too),
=over
L<http://oeis.org/A014577> (etc)
=back
A038189 turn, 0=left,1=right, bit above lowest 1, extra 0
A089013 same as A038189, but initial extra 1
A082410 turn, 1=left,0=right, reversing complement, extra 0
A099545 turn, 1=left,3=right, as [odd part n] mod 4
so turn by 90 degrees * 1 or 3
A034947 turn, 1=left,-1=right, Jacobi (-1/n)
A112347 turn, 1=left,-1=right, Kronecker (-1/n), extra 0
A121238 turn, 1=left,-1=right, -1^(n + some partitions) extra 1
A014577 next turn, 1=left,0=right
A014707 next turn, 0=left,1=right
A014709 next turn, 1=left,2=right
A014710 next turn, 2=left,1=right
These numerous turn sequences differ only in having left or right
represented as 0, 1, -1, etc, and possibly "extra" initial 0 or 1 at n=0
arising from the definitions and the first turn being at n=N=1. The "next
turn" forms begin at n=0 for turn at N=1 and so are the turn at N=n+1.
A005811 total turn
A088748 total turn + 1
A164910 cumulative [total turn + 1]
A166242 2^(total turn), by double/halving
A088431 turn sequence run lengths
A007400 2*runlength
A091072 N positions of the left turns, being odd part form 4K+1
A003460 turns N=1 to N=2^n-1 packed as bits 1=left,0=right
low to high, then written in octal
A126937 points numbered like SquareSpiral (start N=0 and flip Y)
A146559 X at N=2^k, for k>=1, being Re((i+1)^k)
A009545 Y at N=2^k, for k>=1, being Im((i+1)^k)
A227036 boundary length N=0 to N=2^k
also right boundary length to N=2^(k+1)
A203175 left boundary length N=0 to N=2^k
also differences of total boundary
A003230 area enclosed N=0 to N=2^k, for k=4 up
same as double points
A003478 area enclosed by left side,
also area increment
A003477 area of each connected block
A003479 join area between N=2^k replications
A003229 join area increment,
also area left side extra over doubling
A077949 same
A003476 squares on right boundary
also single points N=0 to N=2^(k-1) inclusive
A203175 squares on left boundary
A164395 single points N=0 to N=2^k-1 inclusive, for k=4 up
For reference, "dragon-like" A059125 is similar to the turn sequence
A014707, but differs in having the "middle" values for each replication come
from successive values of the sequence itself, or some such.
=head2 A088431 and A007400
The run lengths A088431 and A007400 are from a continued fraction expansion
of an infinite sum
1 1 1 1 1 1
1 + - + - + -- + --- + ----- + ... + ------- + ...
2 4 16 256 65536 2^(2^k)
X<Shallit, Jeffrey>X<Kmosek>Jeffrey Shallit and independently M. Kmosek show
how continued fraction terms repeated in reverse give rise to this sort of
power sum,
=over
Jeffrey Shallit, "Simple Continued Fractions for Some Irrational Numbers",
Journal of Number Theory, volume 11, 1979, pages 209-217.
L<http://www.cs.uwaterloo.ca/~shallit/papers.html>
L<http://www.cs.uwaterloo.ca/~shallit/Papers/scf.ps>
(And which appears in Knuth "Art of Computer Programming", volume 2, section
4.5.3 exercise 41.)
=cut
# M. Kmosek, "Rozwiniecie niektorych liczb niewymiernych na ulamki lancuchowe", Master's
# thesis, Uniwersytet Warszawski, 1979. -- is that right?
=pod
=back
=head2 A126937
The A126937 C<SquareSpiral> numbering has the dragon curve and square
spiralling with their Y axes in opposite directions, as shown in its
F<a126937.pdf>. So the dragon curve turns up towards positive Y but the
square spiral is numbered down towards negative Y (or vice versa).
C<PlanePath> code for this starting at C<$i=0> would be
my $dragon = Math::PlanePath::DragonCurve->new;
my $square = Math::PlanePath::SquareSpiral->new (n_start => 0);
my ($x, $y) = $dragon->n_to_xy ($i);
my $A126937_of_i = $square->xy_to_n ($x, -$y);
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::DragonRounded>,
L<Math::PlanePath::DragonMidpoint>,
L<Math::PlanePath::R5DragonCurve>,
L<Math::PlanePath::TerdragonCurve>
L<Math::PlanePath::ComplexMinus>,
L<Math::PlanePath::ComplexPlus>,
L<Math::PlanePath::CCurve>,
L<Math::PlanePath::AlternatePaper>
L<http://rosettacode.org/wiki/Dragon_curve>
=for comment http://wiki.tcl.tk/10745 recursive curves
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014 Kevin Ryde
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|