This file is indexed.

/usr/share/perl5/Math/PlanePath/DivisibleColumns.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# A006218 - cumulative count of divisors
#
#   Dirichlet:
#   n * (log(n) + 2*gamma - 1) + O(sqrt(n))  gamma=0.57721... Euler-Mascheroni
#
#   n * (log(n) + 2*gamma - 1) + O(log(n)*n^(1/3))
#
#   Chandrasekharan: bounds
#   n log(n) + (2 gamma - 1) n - 4 sqrt(n) - 1
#   <= a(n) <=
#   n log(n) + (2 gamma - 1) n + 4 sqrt(n)
#
# a(n)=2 * sum[ i=1 to floor(sqrt(n)) of floor(n/i) ] - floor(sqrt(n))^2
#
# cf A003988,A010766 - triangle with values floor(i/j)
#
# http://mathworld.wolfram.com/DirichletDivisorProblem.html
#
# compile-command: "math-image --path=DivisibleColumns --all"
#
# math-image --path=DivisibleColumns --output=numbers --all
#

package Math::PlanePath::DivisibleColumns;
use 5.004;
use strict;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';

# uncomment this to run the ### lines
# use Smart::Comments;

use constant parameter_info_array =>
  [ { name      => 'divisor_type',
      share_key => 'divisor_type_allproper',
      display   => 'Divisor Type',
      type      => 'enum',
      choices   => ['all','proper'],
      default   => 'all',
      description => 'Divisor type, with "proper" meaning divisors d<X, so excluding d=X itself.',
    },
    # { name        => 'direction',
    #   share_key   => 'direction_updown',
    #   display     => 'Direction',
    #   type        => 'enum',
    #   default     => 'up',
    #   choices     => ['up','down'],
    #   choices_display => ['Down','Up'],
    #   description => 'Number points upwards or downwards in the columns.',
    # },
    Math::PlanePath::Base::Generic::parameter_info_nstart0(),
  ];

use constant default_n_start => 0;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant n_frac_discontinuity => .5;

# X=2,Y=1 when proper
# X=1,Y=1 when not
sub x_minimum {
  my ($self) = @_;
  return ($self->{'proper'} ? 2 : 1);
}
use constant y_minimum => 1;

sub diffxy_minimum {
  my ($self) = @_;
  # octant Y<=X so X-Y>=0
  return ($self->{'proper'} ? 1 : 0);
}

use constant dx_minimum => 0;
use constant dx_maximum => 1;
use constant dir_maximum_dxdy => (1,-1); # South-East


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new (@_);

  my $divisor_type = ($self->{'divisor_type'} ||= 'all');
  $self->{'proper'} = ($divisor_type eq 'proper');  # bool

  $self->{'direction'} ||= 'up';

  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }
  return $self;
}

my @x_to_n = (0,0,1);
sub _extend {
  ### _extend(): $#x_to_n
  my $x = $#x_to_n;
  push @x_to_n, $x_to_n[$x] + _count_divisors($x);

  # if ($x > 2) {
  #   if (($x & 3) == 2) {
  #     $x >>= 1;
  #     $next_n += $x_to_n[$x] - $x_to_n[$x-1];
  #   } else {
  #     $next_n +=
  #   }
  # }
  ### last x: $#x_to_n
  ### second last: $x_to_n[$#x_to_n-2]
  ### last: $x_to_n[$#x_to_n-1]
  ### diff: $x_to_n[$#x_to_n-1] - $x_to_n[$#x_to_n-2]
  ### divisors of: $#x_to_n - 2
  ### divisors: _count_divisors($#x_to_n-2)
  ### assert: $x_to_n[$#x_to_n-1] - $x_to_n[$#x_to_n-2] == _count_divisors($#x_to_n-2)
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### DivisibleColumns n_to_xy(): "$n"

  $n = $n - $self->{'n_start'}; # to N=0 basis, and warn on undef

  # $n<-0.5 works with Math::BigInt circa Perl 5.12, it seems
  if ($n < -0.5) {
    return;
  }
  if (is_infinite($n)) {
    return ($n,$n);
  }

  my $frac;
  {
    my $int = int($n);
    if ($n == $int) {
      $frac = 0;
    } else {
      $frac = $n - $int; # -.5 <= $frac < 1
      $n = $int;         # BigFloat int() gives BigInt, use that
      if ($frac > .5) {
        $frac--;
        $n += 1;
        # now -.5 <= $frac < .5
      }
    }
    ### $n
    ### n: "$n"
    ### $frac
    ### assert: $frac >= -.5
    ### assert: $frac < .5
  }
  my $proper = $self->{'proper'} || 0;  # cannot add false '' to BigInt
  ### $proper

  my $x;
  if ($proper) {
    $x = 2;
    ### proper adjusted n: $n
  } else {
    $x = 1;
  }

  for (;;) {
    while ($x > $#x_to_n) {
      _extend();
    }
    $n += $proper;
    ### consider: "n=$n x=$x  x_to_n=".$x_to_n[$x]
    if ($x_to_n[$x] > $n) {
      $x--;
      last;
    }
    $x++;
  }
  $n -= $x_to_n[$x];
  $n -= $proper;
  ### $x
  ### x_to_n: $x_to_n[$x]
  ### x_to_n next: $x_to_n[$x+1]
  ### remainder: $n

  my $y = 1;
  for (;;) {
    unless ($x % $y) {
      if (--$n < 0) {
        return ($x, $frac + $y);
      }
    }
    if (++$y > $x) {
      ### oops, not enough in this column
      return;
    }
  }
}

# Feturn a count of the number of integers dividing $x, including 1 and $x
# itself.   Cf Math::Factor::XS maybe.
sub _count_divisors {
  my ($x) = @_;
  my $ret = 1;
  unless ($x % 2) {
    my $count = 1;
    do {
      $x /= 2;
      $count++;
    } until ($x % 2);
    $ret *= $count;
  }
  my $limit = int(sqrt($x));
  for (my $d = 3; $d <= $limit; $d+=2) {
    unless ($x % $d) {
      my $count = 1;
      do {
        $x /= $d;
        $count++;
      } until ($x % $d);
      $limit = sqrt($x);
      $ret *= $count;
    }
  }
  if ($x > 1) {
    $ret *= 2;
  }
  return $ret;
}

sub xy_is_visited {
  my ($self, $x, $y) = @_;
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  return ($y >= 1
          && ($self->{'proper'}
              ? $x >= 2 && $y <= int($x/2)
              : $x >= 1 && $y <= $x)
          && ($x%$y) == 0);
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### DivisibleColumns xy_to_n(): "$x,$y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);
  if (is_infinite($x)) { return $x; }
  if (is_infinite($y)) { return $y; }

  my $proper = $self->{'proper'};
  if ($proper) {
    if ($x < 2
        || $y < 1
        || $y > int($x/2)
        || ($x%$y)) {
      return undef;
    }
  } else {
    if ($x < 1
        || $y < 1
        || $y > $x
        || ($x%$y)) {
      return undef;
    }
  }

  while ($#x_to_n < $x) {
    _extend();
  }
  ### x_to_n: $x_to_n[$x]

  my $n = $x_to_n[$x] - ($proper ? $x-1 : 1);
  ### base n: $n

  for (my $i = 1+$proper; $i <= $y; $i++) {
    unless ($x % $i) {
      $n += 1;
    }
  }
  return $n + $self->{'n_start'};
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### DivisibleColumns rect_to_n_range(): "$x1,$y1 $x2,$y2"

  $x1 = round_nearest($x1);
  $y1 = round_nearest($y1);
  $x2 = round_nearest($x2);
  $y2 = round_nearest($y2);

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;

  ### rounded ...
  ### $x2
  ### $y2

  if ($self->{'proper'}) {
    if ($x2 < 2            # rect all negative
        || $y2 < 1         # rect all negative
        || 2*$y1 > $x2) {  # rect all above X=2Y octant
      ### outside proper divisors ...
      return (1, 0);
    }
    if ($x1 < 2) { $x1 = 2; }
  } else {
    if ($x2 < 1           # rect all negative
        || $y2 < 1        # rect all negative
        || $y1 > $x2) {   # rect all above X=Y diagonal
      ### outside all divisors ...
      return (1, 0);
    }
    if ($x1 < 1) { $x1 = 1; }
  }
  if (is_infinite($x2)) {
    return ($self->{'n_start'}, $x2);
  }

  my ($n_lo, $n_hi);
  if ($x1 <= $#x_to_n) {
    $n_lo = $x_to_n[$x1];
  } else {
    $n_lo = _count_divisors_cumulative($x1-1);
  }
  if ($x2 < $#x_to_n) {
    $n_hi = $x_to_n[$x2+1];
  } else {
    $n_hi = _count_divisors_cumulative($x2);
  }
  $n_hi -= 1;

  ### rect at: "x=".($x2+1)." x_to_n=".($x_to_n[$x2+1]||'none')

  if ($self->{'proper'}) {
    $n_lo -= $x1-1;
    $n_hi -= $x2;
  }
  return ($n_lo + $self->{'n_start'},
          $n_hi + $self->{'n_start'});
}

# Return a total count of all the divisors of all the integers 1 to $x
# inclusive.
sub _count_divisors_cumulative {
  my ($x) = @_;
  my $total = 0;
  my $limit = int(sqrt($x));
  foreach my $i (1 .. $limit) {
    $total += int($x/$i);
  }
  return 2*$total - $limit*$limit;
}

1;
__END__

=for stopwords Ryde Math-PlanePath sqrt OEIS

=head1 NAME

Math::PlanePath::DivisibleColumns -- X divisible by Y in columns

=head1 SYNOPSIS

 use Math::PlanePath::DivisibleColumns;
 my $path = Math::PlanePath::DivisibleColumns->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path visits points X,Y where X is divisible by Y going by columns from
Y=1 to YE<lt>=X.

    18 |                                                      57
    17 |                                                   51
    16 |                                                49
    15 |                                             44
    14 |                                          40
    13 |                                       36
    12 |                                    34
    11 |                                 28
    10 |                              26
     9 |                           22                         56
     8 |                        19                      48
     7 |                     15                   39
     6 |                  13                33                55
     5 |                9             25             43
     4 |             7          18          32          47
     3 |          4       12       21       31       42       54
     2 |       2     6    11    17    24    30    38    46    53
     1 |    0  1  3  5  8 10 14 16 20 23 27 29 35 37 41 45 50 52
    Y=0|
       +---------------------------------------------------------
       X=0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18

Starting N=0 at X=1,Y=1 means the values 1,3,5,8,etc horizontally on Y=1 are
the sums

     i=K
    sum   numdivisors(i)
     i=1

The current implementation is fairly slack and is slow on medium to large N.

=head1 Proper Divisors

C<divisor_type =E<gt> 'proper'> gives only proper divisors of X, meaning
that Y=X itself is excluded.

=cut

# math-image --path=DivisibleColumns,divisor_type=proper --output=numbers --all --size=134

=pod

     9 |                                                      39
     8 |                                                33
     7 |                                          26
     6 |                                    22                38
     5 |                              16             29
     4 |                        11          21          32
     3 |                   7       13       20       28       37
     2 |             3     6    10    15    19    25    31    36
     1 |       0  1  2  4  5  8  9 12 14 17 18 23 24 27 30 34 35
    Y=0|
       +---------------------------------------------------------
       X=0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18

The pattern is the same, but the X=Y line skipped.  The high line going up
is at Y=X/2, when X is even, that being the highest proper divisor.

=head2 N Start

The default is to number points starting N=0 as shown above.  An optional
C<n_start> can give a different start with the same shape,  For example
to start at 1,

=cut

# math-image --path=DivisibleColumns,n_start=1 --all --output=numbers --size=50x16

=pod

    n_start => 1

     9 |                           23
     8 |                        20
     7 |                     16
     6 |                  14
     5 |               10
     4 |             8          19
     3 |          5       13       22
     2 |       3     7    12    18
     1 |    1  2  4  6  9 11 15 17 21
    Y=0|
       +------------------------------
       X=0  1  2  3  4  5  6  7  8  9

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::DivisibleColumns-E<gt>new ()>

=item C<$path = Math::PlanePath::DivisibleColumns-E<gt>new (divisor_type =E<gt> $str, n_start =E<gt> $n)>

Create and return a new path object.  C<divisor_type> (a string) can be

    "all"       (the default)
    "proper"

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

=back

=head1 FORMULAS

=head2 Rectangle to N Range

The cumulative divisor count up to and including a given X column can be
calculated from the fairly well-known sqrt formula, a sum from 1 to sqrt(X).

    S = floor(sqrt(X))
                              /   i=S             \
    numdivs cumulative = 2 * |   sum  floor(X/i)   | - S^2
                              \   i=1             /

This means the N range for 0 to X can be calculated without working out all
each column count up to X.  In the current code if column counts have been
worked out then they're used, otherwise this formula.

=head1 OEIS

This pattern is in Sloane's Online Encyclopedia of Integer Sequences in the
following forms,

=over

L<http://oeis.org/A061017> (etc)

=back

    n_start=0 (the default)
      A006218    N on Y=1 row, cumulative count of divisors
      A077597    N on X=Y diagonal, cumulative count divisors - 1

    n_start=1
      A061017    X coord, each n appears countdivisors(n) times
      A027750    Y coord, list divisors of successive k
      A056538    X/Y, divisors high to low

    divisor_type=proper (and default n_start=0)
      A027751    Y coord divisor_type=proper, divisors of successive n
                   (extra initial 1)

    divisor_type=proper, n_start=2
      A208460    X-Y, being X subtract each proper divisor

A208460 has "offset" 2, hence C<n_start=2> to match that.  The same with
all divisors would simply insert an extra 0 for the difference at X=Y.

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::CoprimeColumns>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014 Kevin Ryde

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut