/usr/share/perl5/Math/PlanePath/DiagonalsOctant.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 | # Copyright 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
package Math::PlanePath::DiagonalsOctant;
use 5.004;
use strict;
use Carp 'croak';
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'round_nearest';
# uncomment this to run the ### lines
#use Smart::Comments;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant n_frac_discontinuity => .5;
use constant parameter_info_array =>
[ { name => 'direction',
share_key => 'direction_downup',
display => 'Direction',
type => 'enum',
default => 'down',
choices => ['down','up'],
choices_display => ['Down','Up'],
description => 'Number points downwards or upwards along the diagonals.',
},
Math::PlanePath::Base::Generic::parameter_info_nstart1(),
];
use constant diffxy_maximum => 0; # octant X<=Y so X-Y<=0
sub dx_minimum {
my ($self) = @_;
return ($self->{'direction'} eq 'up' ? -1 : undef);
}
sub dx_maximum {
my ($self) = @_;
return ($self->{'direction'} eq 'down' ? 1 : undef);
}
sub dy_minimum {
my ($self) = @_;
return ($self->{'direction'} eq 'down' ? -1 : undef);
}
sub dy_maximum {
my ($self) = @_;
return ($self->{'direction'} eq 'up' ? 1 : undef);
}
sub absdy_minimum {
my ($self) = @_;
return ($self->{'direction'} eq 'down'
? 1 # 'down' always changes
: 0); # 'up' N=2 dY=0
}
use constant dsumxy_minimum => 0; # advancing diagonals
use constant dsumxy_maximum => 1;
sub ddiffxy_minimum {
my ($self) = @_;
return ($self->{'direction'} eq 'down'
? undef # "down" jumps back unlimited at bottom
: -2); # NW diagonal
}
sub ddiffxy_maximum {
my ($self) = @_;
return ($self->{'direction'} eq 'down'
? 2 # SE diagonal
: undef); # "up" jumps down unlimited at top
}
sub dir_minimum_dxdy {
my ($self) = @_;
return ($self->{'direction'} eq 'down'
? (0,1) # vertical N=1to2
: (1,0)); # horizontal N=2to3
}
sub dir_maximum_dxdy {
my ($self) = @_;
return ($self->{'direction'} eq 'down'
? (1,-1) # South-East diagonal
: (2,-1)); # N=6 to N=7
}
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new(@_);
if (! defined $self->{'n_start'}) {
$self->{'n_start'} = $self->default_n_start;
}
my $direction = ($self->{'direction'} ||= 'down');
if (! ($direction eq 'up' || $direction eq 'down')) {
croak "Unrecognised direction option: ", $direction;
}
return $self;
}
# start from integers
# [ 1, 2, 3, 4, 5 ],
# [ 1, 3, 7, 13, 21 ]
# N = (d^2 - d + 1)
# = ($d**2 - $d + 1)
# = (($d - 1)*$d + 1)
#
# starting 0.5 back from the odd Y, numbering d=1 for the Y=1
# [ 1, 2, 3, 4, 5 ],
# [ 2-.5, 5-.5, 10-.5, 17-.5, 26-.5 ] # squares +0.5
# N = (d^2 + 1/2)
# = ($d**2 + 1/2)
# = ($d**2 + 1/2)
# d = 0 + sqrt(1 * $n + -1/2)
# = sqrt($n -1/2)
# = sqrt(4*$n-2)/2
#
# 9 | 26
# 8 | 21
# 7 | 17 22
# 6 | 13 18 23
# 5 | 10 14 19 24
# 4 | 7 11 15 20 25
# 3 | 5 8 12 16
# 2 | 3 6 9
# 1 | 2 4
# Y=0 | 1
# +-------------
#
sub n_to_xy {
my ($self, $n) = @_;
### DiagonalsOctant n_to_xy(): "$n ".(ref $n || '')
# adjust to N=1 at origin X=0,Y=0
$n = $n - $self->{'n_start'} + 1;
my $d = int(4*$n)-2; # for sqrt
if ($d < 0) {
### nothing at N < 0.5 ...
return;
}
$d = int(sqrt($d) / 2);
### $d
# remainder positive or negative relative to the start of the following
# diagonal
#
$n -= $d*($d+1) + 1;
### remainder: $n
# $n first in formulas to preserve n=BigFloat when d=integer is BigInt
#
if ($self->{'direction'} eq 'up') {
if (2*$n >= -1) {
return (-$n + $d,
$n + $d);
} else {
return (-$n - 1,
$n + 2*$d);
}
} else {
if (2*$n >= -1) {
# stripe of d+1 many points starting at Y even, eg. N=13
return ($n,
-$n + 2*$d);
} else {
# stripe of d many points starting at Y odd, eg. N=10
return ($n + $d,
-$n + $d - 1);
}
}
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### xy_to_n(): $x, $y
$x = round_nearest ($x);
if ($self->{'direction'} eq 'up') {
$y = round_nearest ($y);
} else {
$y = - round_nearest (- $y);
}
### rounded
### $x
### $y
if ($y < 0 || $x < 0 || $x > $y) {
### outside upper octant ...
return undef;
}
if ($self->{'direction'} eq 'up') {
my $d = $x + $y + 2;
### $d
return ($d*$d - ($d % 2))/4 - $x + $self->{'n_start'} - 1;
} else {
my $d = $x + $y + 1;
### $d
return ($d*$d - ($d % 2))/4 + $x + $self->{'n_start'};
}
}
# exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
$x1 = round_nearest ($x1);
$x2 = round_nearest ($x2);
if ($self->{'direction'} eq 'up') {
$y1 = round_nearest ($y1);
$y2 = round_nearest ($y2);
} else {
$y1 = - round_nearest (- $y1);
$y2 = - round_nearest (- $y2);
}
# bottom-left and top-right same as Math::PlanePath::Diagonals, but also
# brining $y1 up to within octant
if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); }
if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); }
# x2 | /
# -----+ | /
# | |/ +----
# -----+ + |x1,y2
#
if ($x2 < 0 || $y2 < 0 || $x1 > $y2) {
### entirely outside upper octant, no range ...
return (1, 0);
}
# |
# +---- /
# | | /
# +---- /
# x1 | /
# +
# increase x1 to within octant
if ($x1 < 0) { $x1 *= 0; } # zero by $x1*0 to preserve bignum
# | | /
# | |/
# | /|
# | / +----y1
# + x1
# increase y1 so bottom-left x1,y1 is within octant
if ($y1 < $x1) { $y1 = $x1; }
# | / x2
# | --------+
# | / |
# | -------+
# | /
# +
# decrease x2 so top-right is within octant
if ($x2 > $y2) { $x2 = $y2; }
# exact range bottom left to top right
return ($self->xy_to_n ($x1,$y1),
$self->xy_to_n ($x2,$y2));
}
1;
__END__
=for stopwords PlanePath Ryde Math-PlanePath pronic sqrt eg flonums N-Nstart Nrem octant ie OEIS Nstart
=head1 NAME
Math::PlanePath::DiagonalsOctant -- points in diagonal stripes for an eighth of the plane
=head1 SYNOPSIS
use Math::PlanePath::DiagonalsOctant;
my $path = Math::PlanePath::DiagonalsOctant->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This path follows successive diagonals downwards from the Y axis down to the
X=Y centre line, traversing the eighth of the plane on and above X=Y.
=cut
# math-image --path=DiagonalsOctant --all --output=numbers
=pod
8 | 21 27 33 40 47 55 63 72 81
| \ \ \ \ \ \ \
7 | 17 22 28 34 41 48 56 64
| \ \ \ \ \ \
6 | 13 18 23 29 35 42 49
| \ \ \ \ \
5 | 10 14 19 24 30 36
| \ \ \ \
4 | 7 11 15 20 25
| \ \ \
3 | 5 8 12 16
| \ \
2 | 3 6 9
| \
1 | 2 4
|
Y=0 | 1
+ ----------------------------
X=0 1 2 3 4 5 6 7 8
X<Square numbers>N=1,4,9,16,etc on the X=Y leading diagonal are the perfect
squares. N=2,6,12,20,etc at the ends of the other diagonals are the
X<Pronic numbers>pronic numbers k*(k+1).
Incidentally "octant" usually refers to an eighth of a 3-dimensional
coordinate space. Since C<PlanePath> is only 2 dimensions there's no
confusion and at the risk of abusing nomenclature half a quadrant is
reckoned as an "octant".
=head2 Pyramid Rows
Taking two diagonals running from k^2+1 to (k+1)^2 is the same as a row of
the step=2 C<PyramidRows> (see L<Math::PlanePath::PyramidRows>). Each
endpoint is the same, but here it's two diagonals instead of one row. For
example in the C<PyramidRows> the Y=3 row runs from N=10 to N=16 ending at
X=3,Y=3. Here that's in two diagonals N=10 to N=12 and then N=13 to N=16,
and that N=16 endpoint is the same X=3,Y=3.
=head2 Direction
Option C<direction =E<gt> 'up'> reverses the order within each diagonal and
counts upward from the centre to the Y axis.
=cut
# math-image --path=DiagonalsOctant,direction=up --all --output=numbers_dash
=pod
8 | 25 29 34 39 45 51 58 65 73
| \ \ \ \ \ \ \
7 | 20 24 28 33 38 44 50 57
| \ \ \ \ \ \
6 | 16 19 23 27 32 37 43
| \ \ \ \ \
5 | 12 15 18 22 26 31
| \ \ \ \
4 | 9 11 14 17 21 direction => "up"
| \ \ \
3 | 6 8 10 13
| \ \
2 | 4 5 7
| \
1 | 2 3
|
Y=0 | 1
+---------------------------
X=0 1 2 3 4 5 6 7 8
In this arrangement N=1,2,4,6,9,etc on the Y axis are alternately the
squares and the pronic numbers. The squares are on even Y and pronic on
odd Y.
=head2 N Start
The default is to number points starting N=1 as shown above. An optional
C<n_start> can give a different start, in the same diagonals sequence. For
example to start at 0,
=cut
# math-image --path=DiagonalsOctant,n_start=0 --all --output=numbers --size=35x5
# math-image --path=DiagonalsOctant,n_start=0,direction=up --all --output=numbers --size=35x5
=pod
n_start => 0 n_start=>0
direction => "down" direction=>"up"
6 | 12 | 15
5 | 9 13 | 11 14
4 | 6 10 14 | 8 10 13
3 | 4 7 11 15 | 5 7 9 12
2 | 2 5 8 | 3 4 6
1 | 1 3 | 1 2
Y=0 | 0 | 0
+-------------- +--------------
X=0 1 2 3 X=0 1 2 3
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::DiagonalsOctant-E<gt>new ()>
=item C<$path = Math::PlanePath::DiagonalsOctant-E<gt>new (direction =E<gt> $str, n_start =E<gt> $n)>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path.
For C<$n E<lt> 0.5> the return is an empty list, it being considered the
path begins at 1.
=item C<$n = $path-E<gt>xy_to_n ($x,$y)>
Return the point number for coordinates C<$x,$y>. C<$x> and C<$y> are
each rounded to the nearest integer, which has the effect of treating each
point C<$n> as a square of side 1.
=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>
The returned range is exact, meaning C<$n_lo> and C<$n_hi> are the smallest
and biggest in the rectangle.
=back
=head1 FORMULAS
=head2 N to X,Y
To break N into X,Y it's convenient to take two diagonals at a time, since
the length then changes by 1 each pair making a quadratic. Starting at each
X=0,Y=odd just after perfect square N allows just a sqrt.
Nstart = d*d+1
where d numbers diagonal pairs, eg. d=3 for X=0,Y=5 going down. This is
easily reversed as
d = floor sqrt(N-1)
The code reckons the start of the diagonal as 0.5 further back, so that
N=9.5 is at X=-.5,Y=5.5. To do that d is formed as
d = floor sqrt(N-0.5)
= int( sqrt(int(4*$n)-2)/2 )
Taking /2 out of the sqrt helps with C<Math::BigInt> which circa Perl 5.14
doesn't inter-operate with flonums very well.
In any case N-Nstart is an offset into two diagonals, the first of length d
many points and the second d+1. For example d=3 starting Y=5 for points
N=10,11,12 followed by Y=6 N=13,14,15,16.
The formulas are simplified by calculating a remainder relative to the
second diagonal, so it's negative for the first and positive for the second,
Nrem = N - (d*(d+1)+1)
d*(d+1)+1 is 1 past the pronic numbers when end each first diagonal, as
described above. In any case for example d=3 is relative to N=13 making
Nrem=-3,-2,-1 or Nrem=0,1,2,3.
To include the preceding 0.5 in the second diagonal simply means reckoning
NremE<gt>=-0.5 as belonging to the second. In that base
if Nrem >= -0.5
X = Nrem # direction="down"
Y = 2*d - Nrem
else
X = Nrem + d
Y = d - Nrem - 1
For example N=15 Nrem=1 is the first case, X=1, Y=2*3-1=5. Or N=11 Nrem=-2
the second X=-2+3=1, Y=3-(-2)-1=4.
For "up" direction the Nrem and d are the same, but the coordinate
directions reverse.
if Nrem >= -0.5
X = d - Nrem # direction="up"
Y = d + Nrem
else
X = -Nrem - 1
Y = 2d + Nrem
Another way is to reckon Nstart from the X=0,Y=even diagonals, which is then
two diagonals of the same length and d formed by a sqrt inverting a pronic
Nstart=d*(d+1).
=head2 Rectangle to N Range
Within each row increasing X is increasing N, and in each column increasing
Y is increasing N. This is so in both "down" and "up" arrangements. On
that basis in a rectangle the lower left corner is the minimum N and the
upper right is the maximum N.
If the rectangle is partly outside the covered octant then the corners must
be shifted to put them in range, ie. trim off any rows or columns entirely
outside the rectangle. For the lower left this means,
| | /
| | /
+-------- if x1 < 0 then x1 = 0
x1 | / increase x1 to within octant
|/
+
| |/
| | if y1 < x1 then y1 = x1
| /| increase y1 to bottom-left within octant
|/ +----y1
+ x1
And for the top right,
| / x2
| ------+ y2 if x2 > y2 then x2 = y2
| / | decrease x2 so top-right within octant
| / | (the end of the y2 row)
|/
+
=head1 OEIS
Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include
=over
L<http://oeis.org/A055087> (etc)
=back
direction=down
A002620 N at end each run X=k,Y=k and X=k,Y=k+1
direction=down, n_start=0
A055087 X coord, runs 0 to k twice
A082375 Y-X, runs k to 0 or 1 stepping by 2
A005563 N on X=Y diagonal, X*(X+2)
direction=up
A002620 N on Y axis, end of each run, quarter squares
direction=up, n_start=0
A024206 N on Y axis (starting from n=1 is Y=0, so Y=n-1)
A014616 N in column X=1 (is Y axis N-1, from N=3)
A002378 N on X=Y diagonal, pronic X*(X+1)
either direction, n_start=0
A055086 X+Y, k repeating floor(k/2)+1 times
A004652 N start and end of each even-numbered diagonal
permutations
A056536 N of PyramidRows in DiagonalsOctant order
A091995 with DiagonalsOctant direction=up
A091018 N-1, ie. starting from 0
A090894 N-1 and DiagonalsOctant direction=up
A056537 N of DiagonalsOctant at X,Y in PyramidRows order
inverse of A056536
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::Diagonals>,
L<Math::PlanePath::DiagonalsAlternating>,
L<Math::PlanePath::PyramidRows>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2012, 2013, 2014 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|