This file is indexed.

/usr/share/perl5/Math/PlanePath/DekkingCurve.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


package Math::PlanePath::DekkingCurve;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
        'Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'digit_split_lowtohigh',
  'digit_join_lowtohigh';

# uncomment this to run the ### lines
#use Smart::Comments;


use constant n_start => 0;
use constant class_x_negative => 0;
use constant class_y_negative => 0;


#------------------------------------------------------------------------------

use Math::PlanePath::DekkingCentres;
use vars '@_next_state','@_digit_to_x','@_digit_to_y','@_yx_to_digit';
BEGIN {
  *_next_state = \@Math::PlanePath::DekkingCentres::_next_state;
  *_digit_to_x = \@Math::PlanePath::DekkingCentres::_digit_to_x;
  *_digit_to_y = \@Math::PlanePath::DekkingCentres::_digit_to_y;
  *_yx_to_digit = \@Math::PlanePath::DekkingCentres::_yx_to_digit;
}

# tables generated by tools/dekking-curve-table.pl
#
my @edge_dx = (0,0,0,1,1, 0,0,1,1,0, 0,0,0,1,0, 0,0,1,0,1, 0,1,0,1,1,
               1,1,1,1,1, 1,1,1,0,1, 1,1,0,1,0, 0,0,1,0,0, 0,1,1,0,0,
               1,1,1,0,0, 1,1,0,0,1, 1,1,1,0,1, 1,1,0,1,0, 1,0,1,0,0,
               0,0,0,0,0, 0,0,0,1,0, 0,0,1,0,1, 1,1,0,1,1, 1,0,0,1,1,
               1,1,1,1,1, 1,0,0,0,0, 1,1,1,1,1, 0,0,0,0,1, 1,0,0,1,1,
               1,1,1,0,0, 1,1,1,1,1, 0,0,0,1,1, 0,0,1,0,1, 0,1,0,1,1,
               0,0,0,0,0, 0,1,1,1,1, 0,0,0,0,0, 1,1,1,1,0, 0,1,1,0,0,
               0,0,0,1,1, 0,0,0,0,0, 1,1,1,0,0, 1,1,0,1,0, 1,0,1,0,0);
my @edge_dy = (0,0,0,0,0, 0,0,0,1,0, 0,0,1,0,1, 1,1,0,1,1, 1,0,0,1,1,
               0,0,0,1,1, 0,0,1,1,0, 0,0,0,1,0, 0,0,1,0,1, 0,1,0,1,1,
               1,1,1,1,1, 1,1,1,0,1, 1,1,0,1,0, 0,0,1,0,0, 0,1,1,0,0,
               1,1,1,0,0, 1,1,0,0,1, 1,1,1,0,1, 1,1,0,1,0, 1,0,1,0,0,
               0,0,0,1,1, 0,0,0,0,0, 1,1,1,0,0, 1,1,0,1,0, 1,0,1,0,0,
               1,1,1,1,1, 1,0,0,0,0, 1,1,1,1,1, 0,0,0,0,1, 1,0,0,1,1,
               1,1,1,0,0, 1,1,1,1,1, 0,0,0,1,1, 0,0,1,0,1, 0,1,0,1,1,
               0,0,0,0,0, 0,1,1,1,1, 0,0,0,0,0, 1,1,1,1,0, 0,1,1,0,0);

sub n_to_xy {
  my ($self, $n) = @_;
  ### DekkingCurve n_to_xy(): $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  my $int = int($n);
  $n -= $int;

  my @digits = digit_split_lowtohigh($int,25);
  my $state = 0;
  my @x;
  my @y;
  foreach my $i (reverse 0 .. $#digits) {
    $state += $digits[$i];
    $x[$i] = $_digit_to_x[$state];
    $y[$i] = $_digit_to_y[$state];
    $state = $_next_state[$state];
  }

  ### @x
  ### @y
  ### $state
  ### dx: $_digit_to_x[$state+24] - $_digit_to_x[$state]
  ### dy: $_digit_to_y[$state+24] - $_digit_to_y[$state]

  my $zero = $int * 0;
  return ($n * (($_digit_to_x[$state+24] - $_digit_to_x[$state])/4)
          + digit_join_lowtohigh(\@x, 5, $zero)
          + $edge_dx[$state],

          $n * (($_digit_to_y[$state+24] - $_digit_to_y[$state])/4)
          + digit_join_lowtohigh(\@y, 5, $zero)
          + $edge_dy[$state]);
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### DekkingCurve xy_to_n(): "$x, $y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);
  if ($x < 0 || $y < 0) {
    return undef;
  }
  if (is_infinite($x)) {
    return $x;
  }
  if (is_infinite($y)) {
    return $y;
  }

  foreach my $xoffset (0,-1) {
    foreach my $yoffset (0,-1) {

      my @x = digit_split_lowtohigh($x+$xoffset,5);
      my @y = digit_split_lowtohigh($y+$yoffset,5);
      my $state = 0;
      my @n;
      foreach my $i (reverse 0 .. max($#x,$#y)) {
        my $digit = $n[$i] = $_yx_to_digit[$state + 5*($y[$i]||0) + ($x[$i]||0)];
        $state = $_next_state[$state+$digit];
      }
      my $n = digit_join_lowtohigh(\@n, 25, $x*0*$y);
      my ($nx,$ny) = $self->n_to_xy($n);
      if ($nx == $x && $ny == $y) {
        return $n;
      }
    }
  }
  return undef;
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### DekkingCurve rect_to_n_range(): "$x1,$y1, $x2,$y2"

  $x1 = round_nearest ($x1);
  $x2 = round_nearest ($x2);
  $y1 = round_nearest ($y1);
  $y2 = round_nearest ($y2);

  $x2 = max($x1,$x2);
  $y2 = max($y1,$y2);

  if ($x2 < 0 || $y2 < 0) {
    ### rectangle all negative, no N values ...
    return (1, 0);
  }

  my ($pow) = round_down_pow (max($x2,$y2)+1, 5);
  ### $pow
  ### $level
  return (0, 25*$pow*$pow-1);
}

#------------------------------------------------------------------------------

sub level_to_n_range {
  my ($self, $level) = @_;
  return (0, 25**$level - 1);
}
sub n_to_level {
  my ($self, $n) = @_;
  if ($n < 0) { return undef; }
  if (is_infinite($n)) { return $n; }
  $n = round_nearest($n);
  my ($pow, $exp) = round_down_pow ($n, 25);
  return $exp;
}

#------------------------------------------------------------------------------
1;
__END__

=for stopwords eg Ryde ie Math-PlanePath Dekking

=head1 NAME

Math::PlanePath::DekkingCurve -- 5x5 self-similar edge curve

=head1 SYNOPSIS

 use Math::PlanePath::DekkingCurve;
 my $path = Math::PlanePath::DekkingCurve->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This is an integer version of a 5x5 self-similar curve by Dekking,

=cut

# math-image --path=DekkingCurve --all --output=numbers_dash --size=78x30

=pod

     10 |             123-124-125-...      86--85
        |               |                   |   |
      9 | 115-116-117 122-121  90--89--88--87  84
        |   |       |       |   |               |
      8 | 114-113 118-119-120  91--92--93  82--83
        |       |                       |   |         
      7 |     112 107-106 103-102  95--94  81  78--77 
        |       |   |   |   |   |   |       |   |   | 
      6 |     111 108 105-104 101  96--97  80--79  76 
        |       |   |           |       |           | 
      5 |     110-109  14--15 100--99--98  39--40  75          66--65
        |               |   |               |   |   |           |   |
      4 |  10--11--12--13  16  35--36--37--38  41  74  71--70  67  64
        |   |               |   |               |   |   |   |   |   |
      3 |   9---8---7  18--17  34--33--32  43--42  73--72  69--68  63
        |           |   |               |   |                       |
      2 |       5---6  19  22--23  30--31  44  47--48  55--56--57  62--61 
        |       |       |   |   |   |       |   |   |   |       |       | 
      1 |       4---3  20--21  24  29--28  45--46  49  54--53  58--59--60 
        |           |           |       |           |       |             
    Y=0 |   0---1---2          25--26--27          50--51--52             
        +----------------------------------------------------------------
          X=0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15

The base pattern is the N=0 to N=25 section.  It then repeats with rotations
or reversals which make the ends join.  For example N=75 to N=100 is the
base pattern in reverse, ie. from N=25 down to N=0.  Or N=50 to N=75 is
reverse and also rotate by -90.

The curve segments are edges of squares in a 5x5 arrangement.

     +- - -+- - -+- - 14----15  ---+
     |     |     |     |  v  |>    |
        ^     ^       <|     |      
    10----11----12----13- - 16   --+
     |              v        |>    |
     |>       ^           ^  |      
     9-----8-----7 -- 18----17   --+
        v  |     |     |>          |
     |        ^  |>    |        ^   
     +- -  5-----6 -  19    22----23
           |          <|     |    <|
     |    <|  ^        |    <|     |
     +- -  4-----3    20----21 -- 24
                 |       v        <|
        ^     ^  |>    |     |     |
     0-----1-----2  -- + -- -+-   25

The little notch marks show which square each edge represents.  This is the
side the curve expands into at the next level.  For example N=1 to N=2 has
its notch on the left so the next level N=25 to N=50 expands on the left.

An expansion on the left is a repeat of the base shape, possibly rotated 90,
180 or 270 degrees.  An expansion on the right is the base shape in reverse,
as for example N=2 to N=3 on the right becomes N=50 to N=75 traversing to
the right at the next level.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for the behaviour common to all path
classes.

=over 4

=item C<$path = Math::PlanePath::DekkingCurve-E<gt>new ()>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, 25**$level - 1)>.

=back

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::DekkingCentres>,
L<Math::PlanePath::CincoCurve>,
L<Math::PlanePath::PeanoCurve>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut