This file is indexed.

/usr/share/perl5/Math/PlanePath/CfracDigits.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
# Copyright 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


package Math::PlanePath::CfracDigits;
use 5.004;
use strict;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'digit_split_lowtohigh',
  'digit_join_lowtohigh';

use Math::PlanePath::RationalsTree;
*_xy_to_quotients = \&Math::PlanePath::RationalsTree::_xy_to_quotients;

use Math::PlanePath::CoprimeColumns;
*_coprime = \&Math::PlanePath::CoprimeColumns::_coprime;

# uncomment this to run the ### lines
#use Smart::Comments;


use constant parameter_info_array =>
  [ { name      => 'radix',
      share_key => 'radix2_min1',
      display   => 'Radix',
      type      => 'integer',
      minimum   => 1,
      default   => 2,
      width     => 3,
    },
  ];

use constant n_start => 0;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant x_minimum => 1;
use constant y_minimum => 2;
use constant diffxy_maximum => -1; # upper octant X<=Y-1 so X-Y<=-1
use constant gcdxy_maximum => 1;  # no common factor

# FIXME: believe this is right, but check N+1 always changes Y
sub absdy_minimum {
  my ($self) = @_;
  return ($self->{'radix'} < 3 ? 0 : 1);
}

# radix=1 N=1       has dir4=0
# radix=2 N=5628    has dir4=0 dx=9,dy=0
# radix=3 N=1189140 has dir4=0 dx=1,dy=0
# radix=4 N=169405  has dir4=0 dx=2,dy=0
# always eventually 0 ?
# use constant dir_minimum_dxdy => (1,0);  # the default

# radix=1 N=4    dX=1,dY=-1 for dir4=3.5
# radix=2 N=4413 dX=9,dY=-1
# radix=3 N=9492 dX=3,dY=-1
# ENHANCE-ME: suspect believe approaches 360 degrees, eventually, but proof?
# use constant dir_maximum_dxdy => (0,0);  # the default


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new (@_);
  unless ($self->{'radix'} && $self->{'radix'} >= 1) {
    $self->{'radix'} = 2;
  }
  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### CfracDigits n_to_xy(): "$n"

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  {
    my $int = int($n);
    if ($n != $int) {
      ### frac ...
      my $frac = $n - $int;  # inherit possible BigFloat/BigRat
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      ### x1,y1: "$x1, $y1"
      ### x2,y2: "$x2, $y2"
      ### dx,dy: "$dx, $dy"
      ### result: ($frac*$dx + $x1).', '.($frac*$dy + $y1)
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int;
  }

  my $radix = $self->{'radix'};
  my $zero = ($n * 0);  # inherit bignum 0
  my $x = $zero;
  my $y = 1 + $zero;    # inherit bignum 1

  foreach my $q (_n_to_quotients_bottomtotop($n,$radix,$zero)) {  # bottom to top
    ### at: "$x,$y   q=$q"

    # 1/(q + X/Y) = 1/((qY+X)/Y)
    #             = Y/(qY+X)
    ($x,$y) = ($y, $q*$y + $x);
  }

  ### return: "$x,$y"
  return ($x,$y);
}

# Return a list of quotients bottom to top.  The base3 digits of N are split
# by "3" delimiters and the parts adjusted so the first bottom-most q>=2 and
# the rest q>=1.  The values are ready to be used as continued fraction
# terms.
#
sub _n_to_quotients_bottomtotop {
  my ($n, $radix, $zero) = @_;
  ### _n_to_quotients_bottomtotop(): $n

  my $radix_plus_1 = $radix + 1;
  my @ret;
  my @group;
  foreach my $digit (_digit_split_1toR_lowtohigh($n,$radix_plus_1)) {
    if ($digit == $radix_plus_1) {
      ### @group
      push @ret, _digit_join_1toR_destructive(\@group, $radix, $zero) + 1;
      @group = ();
    } else {
      push @group, $digit;
    }
  }
  ### final group: @group
  push @ret, _digit_join_1toR_destructive(\@group, $radix, $zero) + 1;

  $ret[0] += 1;  # bottom-most is +2 rather than +1

  ### _n_to_quotients_bottomtotop result: @ret
  return @ret;
}

# Return a list of digits 1 <= d <= R which is $n written in $radix, low to
# high digits.
sub _digit_split_1toR_lowtohigh {
  my ($n, $radix) = @_;
  ### assert: $radix >= 1
  ### assert: $n >= 0

  if ($radix == 1) {
    return (1) x $n;
  }
  my @digits = digit_split_lowtohigh($n,$radix);

  # mangle 0 -> R
  my $borrow = 0;
  foreach my $digit (@digits) {   # low to high
    if ($borrow = (($digit -= $borrow) <= 0)) {  # modify array contents
      $digit += $radix;
    }
  }
  if ($borrow) {
    ### assert: $digits[-1] == $radix
    pop @digits;
  }

  return @digits;
}

sub _digit_join_1toR_destructive {
  my ($aref, $radix, $zero) = @_;
  ### assert: $radix >= 1

  if ($radix == 1) {
    return scalar(@$aref);
  }

  # mangle any digit==$radix down to digit=0
  my $carry = 0;
  foreach my $digit (@$aref) {   # low to high
    if ($carry = (($digit += $carry) >= $radix)) {  # modify array contents
      $digit -= $radix;
    }
  }
  if ($carry) {
    push @$aref, 1;
  }

  ### _digit_join_1toR_destructive() result: digit_join_lowtohigh($aref, $radix, $zero)
  return digit_join_lowtohigh($aref, $radix, $zero);
}

sub xy_is_visited {
  my ($self, $x, $y) = @_;
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  return (! ($x < 1 || $y < 2 || $x >= $y)
          && _coprime($x,$y));
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  ### CfracDigits xy_to_n(): "$x,$y"

  if (is_infinite($x)) { return $x; }
  if (is_infinite($y)) { return $y; }
  if ($x < 1 || $y < 2 || $x >= $y) {
    return undef;
  }

  my @quotients = _xy_to_quotients($x,$y)
    or return undef;  # $x,$y have a common factor
  ### @quotients

  # drop initial 0 integer part
  ### assert: $quotients[0] == 0
  shift @quotients;

  return _cfrac_join_toptobottom(\@quotients,
                                 $self->{'radix'},
                                 $x * 0 * $y);   # inherit bignum 0
}

# $aref is a list of continued fraction quotients from top-most to
# bottom-most.  There's no initial integer term in $aref.  Each quotient is
# q >= 1 except the bottom-most which q-1 and so also >=1.
#
sub _cfrac_join_toptobottom {
  my ($aref, $radix, $zero) = @_;
  ### _cfrac_join_toptobottom(): $aref

  my @digits;
  foreach my $q (reverse @$aref) {
    ### assert: $q >= 1
    push @digits, _digit_split_1toR_lowtohigh($q-1, $radix), $radix+1;
  }
  pop @digits;  # no high delimiter
  ### groups digits 1toR: @digits
  return _digit_join_1toR_destructive(\@digits, $radix+1, $zero);
}


# X/Y = F[k]/F[k+1] quotients all 1
# N = all delimiter digits R,R,...,R
#   = 1222...2221
#   = R^k + 2*(R^k+1)/(R-1) - 1
#   = (RR^k - R^k + 2R^k + 2 - R + 1) / (R-1)
#   = (RR^k + R^k - R + 3) / (R-1)
#   = ((R+1)R^k - R + 3) / (R-1)
# take high as "12" = R+2
# k = log(Y)/log(phi)
# N = (R+2) * R ** k
# N = Y ** (log(R)/log(phi))
#
# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### rect_to_n_range()

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;
  ### $x2
  ### $y2

  #   |    /
  #   |   / x1
  #   |  /  +-----y2
  #   | /   |
  #   |/    +-----
  #
  if ($x2 < 1 || $y2 < 2 || $x1 >= $y2) {
    ### no values, rect outside upper octant ...
    return (1,0);
  }

  my $zero = ($x1 * 0 * $y1 * $x2 * $y2);  # inherit bignum
  my $radix = $self->{'radix'};

  return (0,
          ($radix+3)
          * ($radix+1 + $zero) ** ($radix == 1
                                   ? $y2
                                   : _log_phi_estimate($y2,$radix)));
}

# Return an estimate of log base phi of $x, that being log($x)/log(phi),
# where phi=(1+sqrt(5))/2 the golden ratio.
#
sub _log_phi_estimate {
  my ($x) = @_;
  my ($pow,$exp) = round_down_pow ($x, 2);
  return int ($exp * (log(2) / log((1+sqrt(5))/2)));
}

1;
__END__

=for stopwords eg Ryde OEIS ie Math-PlanePath coprime octant onwards decrement Shallit radix-1 Radix radix HCS 10www w's

=head1 NAME

Math::PlanePath::CfracDigits -- continued fraction terms encoded by digits

=head1 SYNOPSIS

 use Math::PlanePath::CfracDigits;
 my $path = Math::PlanePath::CfracDigits->new (tree_type => 'Kepler');
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Shallit, Jeffrey>This path enumerates reduced fractions
S<0 E<lt> X/Y E<lt> 1> with X,Y no common factor using a method by Jeffrey
Shallit encoding continued fraction terms in digit strings, as per

=over

Jeffrey Shallit, "Number Theory and Formal Languages", part 3,
L<https://cs.uwaterloo.ca/~shallit/Papers/ntfl.ps>

=back

Fractions up to a given denominator are covered by roughly N=den^2.28.  This
is a much smaller N range than the run-length encoding in C<RationalsTree>
and C<FractionsTree> (but is more than C<GcdRationals>).

=cut

# math-image --path=CfracDigits --output=numbers_xy --all --size=78x17

=pod

    15  |    25  27      91          61 115         307     105 104
    14  |    23      48      65             119     111     103
    13  |    22  24  46  29  66  59 113 120 101 109  99  98
    12  |    17              60     114              97
    11  |    16  18  30  64  58 112 118 102  96  95
    10  |    14      28             100      94
     9  |    13  15      20  38      36  35
     8  |     8      21      39      34
     7  |     7   9  19  37  33  32
     6  |     5              31
     5  |     4   6  12  11
     4  |     2      10
     3  |     1   3
     2  |     0
     1  |
    Y=0 |
         ----------------------------------------------------------
        X=0   1   2   3   4   5   6   7   8   9  10  11  12  13  14

A fraction S<0 E<lt> X/Y E<lt> 1> has a finite continued fraction of the
form

                      1
    X/Y = 0 + ---------------------
                            1
              q[1] + -----------------
                                  1
                     q[2] + ------------
                         ....
                                      1
                            q[k-1] + ----
                                     q[k]

    where each  q[i] >= 1
    except last q[k] >= 2


The terms are collected up as a sequence of integers E<gt>=0 by subtracting
1 from each and 2 from the last.

    # each >= 0
    q[1]-1,  q[2]-1, ..., q[k-2]-1, q[k-1]-1, q[k]-2

These integers are written in base-2 using digits 1,2.  A digit 3 is written
between each term as a separator.

    base2(q[1]-1), 3, base2(q[2]-1), 3, ..., 3, base2(q[k]-2)

If a term q[i]-1 is zero then its base-2 form is empty and there's adjacent
3s in that case.  If the high q[1]-1 is zero then a bare high 3, and if the
last q[k]-2 is zero then a bare final 3.  If there's just a single term q[1]
and q[1]-2=0 then the string is completely empty.  This occurs for X/Y=1/2.

The resulting string of 1s,2s,3s is reckoned as a base-3 value with digits
1,2,3 and the result is N.  All possible strings of 1s,2s,3s occur
(including the empty string) and so all integers NE<gt>=0 correspond
one-to-one with an X/Y fraction with no common factor.

Digits 1,2 in base-2 means writing an integer in the form

    d[k]*2^k + d[k-1]*2^(k-1) + ... + d[2]*2^2 + d[1]*2 + d[0]
    where each digit d[i]=1 or 2

Similarly digits 1,2,3 in base-3 which is used for N,

    d[k]*3^k + d[k-1]*3^(k-1) + ... + d[2]*3^2 + d[1]*3 + d[0]
    where each digit d[i]=1, 2 or 3

This is not the same as the conventional binary and ternary radix
representations by digits 0,1 or 0,1,2 (ie. 0 to radix-1).  The effect of
digits 1 to R is to change any 0 digit to instead R and decrement the value
above that position to compensate.

=head2 Axis Values

N=0,1,2,4,5,7,etc in the X=1 column is integers with no digit 0s in ternary.
N=0 is considered no digits at all and so no digit 0.  These points are
fractions 1/Y which are a single term q[1]=Y-1 and hence no "3" separators,
only a run of digits 1,2.  These N values are also those which are the same
when written in digits 0,1,2 as when written in digits 1,2,3, since there's
no 0s or 3s.

N=0,3,10,11,31,etc along the diagonal Y=X+1 are integers which are ternary
"10www..." where the w's are digits 1 or 2, so no digit 0s except the
initial "10".  These points Y=X+1 points are X/(X+1) with continued fraction

                     1
    X/(X+1) =  0 + -------
                        1
                   1 + ---
                        X

so q0=1 and q1=X, giving N="3,X-1" in digits 1,2,3, which is N="1,0,X-1" in
normal ternary.  For example N=34 is ternary "1021" which is leading "10"
and then X-1=7 ternary "21".

=head2 Radix

The optional C<radix> parameter can select another base for the continued
fraction terms, and corresponding radix+1 for the resulting N.  The default
is radix=2 as described above.  Any integer radixE<gt>=1 can be selected.
For example,

=cut

# math-image --path=CfracDigits,radix=5 --output=numbers_xy --all --size=78x17

=pod

    radix => 5

    11  |    10   30  114  469   75  255 1549 1374  240  225
    10  |     9       109                1369       224
     9  |     8   24        74  254       234  223
     8  |     7        78       258        41
     7  |     5   18   73  253  228   40
     6  |     4                  39
     5  |     3   12   42   38
     4  |     2        37
     3  |     1    6
     2  |     0
     1  |
    Y=0 |
         ----------------------------------------------------
        X=0   1    2    3    4    5    6    7    8    9   10

The X=1 column is integers with no digit 0 in base radix+1, so in radix=5
means no 0 digit in base-6.

=head2 Radix 1

The radix=1 case encodes continued fraction terms using only digit 1, which
means runs of q many "1"s to add up to q, and then digit "2" as separator.

    N =  11111 2 1111 2 ... 2 1111 2 11111     base2 digits 1,2
         \---/   \--/         \--/   \---/
         q[1]-1  q[2]-1     q[k-1]-1 q[k]-2

which becomes in plain binary

    N = 100000  10000   ...  10000  011111     base2 digits 0,1
        \----/  \---/        \---/  \----/
         q[1]    q[2]       q[k-1]  q[k]-1

Each "2" becomes "0" in plain binary and carry +1 into the run of 1s above
it.  That carry propagates through those 1s, turning them into 0s, and stops
at the "0" above them (which had been a "2").  The low run of 1s from q[k]-2
has no "2" below it and is therefore unchanged.

=cut

# math-image --path=CfracDigits,radix=1 --output=numbers_xy --all --size=60x12

=pod

    radix => 1

    11  |   511  32  18  21  39  55  29  26  48 767
    10  |   255      17              25     383
     9  |   127  16      19  27      24 191
     8  |    63      10      14      95
     7  |    31   8   9  13  12  47
     6  |    15              23
     5  |     7   4   6  11
     4  |     3       5
     3  |     1   2
     2  |     0
     1  |
    Y=0 |
         -------------------------------------------
        X=0   1   2   3   4   5   6   7   8   9  10

The result is similar to L<Math::PlanePath::RationalsTree/HCS Continued
Fraction>.  But the lowest run is "0111" here, instead of "1000" as it is in
the HCS.  So N-1 here, and a flip (Y-X)/X to map from X/YE<lt>1 here to
instead all rationals for the HCS tree.  For example

    CfracDigits radix=1       RationalsTree tree_type=HCS

    X/Y = 5/6                 (Y-X)/X = 1/5
    is at                     is at
    N = 23 = 0b10111          N = 24 = 0b11000
                ^^^^                      ^^^^

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over

=item C<$path = Math::PlanePath::CfracDigits-E<gt>new ()>

=item C<$path = Math::PlanePath::CfracDigits-E<gt>new (radix =E<gt> $radix)>

Create and return a new path object.

=item C<$n = $path-E<gt>n_start()>

Return 0, the first N in the path.

=back

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path include

=over

L<http://oeis.org/A032924> (etc)

=back

    radix=1
      A071766    X coordinate (numerator), except extra initial 1

    radix=2 (the default)
      A032924    N in X=1 column, ternary no digit 0 (but lacking N=0)

    radix=3
      A023705    N in X=1 column, base-4 no digit 0 (but lacking N=0)

    radix=4
      A023721    N in X=1 column, base-5 no digit 0 (but lacking N=0)

    radix=10
      A052382    N in X=1 column, decimal no digit 0 (but lacking N=0)

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::FractionsTree>,
L<Math::PlanePath::CoprimeColumns>

L<Math::PlanePath::RationalsTree>,
L<Math::PlanePath::GcdRationals>,
L<Math::PlanePath::DiagonalRationals>

L<Math::ContinuedFraction>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut