This file is indexed.

/usr/share/perl5/Math/PlanePath/CellularRule57.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.



package Math::PlanePath::CellularRule57;
use 5.004;
use strict;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'round_nearest';

use Math::PlanePath::CellularRule54;
*_rect_for_V = \&Math::PlanePath::CellularRule54::_rect_for_V;

# uncomment this to run the ### lines
#use Smart::Comments;


use constant class_y_negative => 0;
use constant n_frac_discontinuity => .5;

use constant parameter_info_array =>
  [ { name        => 'mirror',
      display     => 'Mirror',
      type        => 'boolean',
      default     => 0,
      description => 'Mirror to "rule 99" instead.',
    },
    Math::PlanePath::Base::Generic::parameter_info_nstart1(),
  ];

sub x_negative_at_n {
  my ($self) = @_;
  return $self->n_start + ($self->{'mirror'} ? 1 : 2);
}
use constant sumxy_minimum => 0;  # triangular X>=-Y so X+Y>=0
use constant diffxy_maximum => 0; # triangular X<=Y so X-Y<=0
use constant dx_maximum => 3;
use constant dy_minimum => 0;
use constant dy_maximum => 1;

sub absdx_minimum {
  my ($self) = @_;
  return ($self->{'mirror'} ? 0 : 1);
}
use constant dsumxy_maximum => 3;  # straight East dX=+3
use constant ddiffxy_maximum => 3; # straight East dX=+3
use constant dir_maximum_dxdy => (-1,0); # supremum, West and dY=+1 up


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new (@_);
  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }
  return $self;
}

#            left
# even  y=3     5
#         5    12
#         7    23
#         9    38
# [1,2,3,4], [5,12,23,38]
#
# N = (2 d^2 + d + 2)
#   = (2*$d**2 + $d + 2)
#   = ((2*$d + 1)*$d + 2)
# d = -1/4 + sqrt(1/2 * $n + -15/16)
#   = (-1 + 4*sqrt(1/2 * $n + -15/16)) / 4
#   = (sqrt(8*$n-15)-1)/4
# with Y=2*d+1

# row 19, d=9
# N=173 to N=181 is 9 cells rem=0..8  is d-1
# 1/3 section 3 cells rem=0,1,2  floor((d-1)/3)
# 2/3 section 6 cells
# right solid N=191 to N=200 is 10 of is rem<d
#
# row 21, d=10
# 1/3 section 4 cells rem=0,1,2,3  floor((d-1)/3)
# 2/3 section 6 cells
#
# row 23, d=11
# 1/3 section 4 cells rem=0,1,2,3  floor((d-1)/3)
# 2/3 section 7 cells
#
# row 25, d=12
# 2/3 section 8 cells
#
# row 27, d=13
# 2/3 section 8 cells
#
# row 29, d=14
# 2/3 section 9 cells    floor(2d/3)
#
# row 31, d=15
# 2/3 section 10 cells   floor(2d/3)
#
#
# row 18 d=8
# odd 1/3 section   4 cells  (d+4)/3
#
# row 20 d=9
# odd 1/3 section   4 cells
#
# row 22 d=10
# odd 1/3 section   4 cells
#
# row 23 d=11
# odd 1/3 section   5 cells


sub n_to_xy {
  my ($self, $n) = @_;
  ### CellularRule57 n_to_xy(): $n

  $n = $n - $self->{'n_start'} + 1; # to N=1 basis, and warn if $n undef
  my $frac;
  {
    my $int = int($n);
    $frac = $n - $int;
    $n = $int;       # BigFloat int() gives BigInt, use that
    if (2*$frac >= 1) {
      $frac -= 1;
      $n += 1;
    }
    # -0.5 <= $frac < 0.5
    ### assert: 2*$frac >= -1
    ### assert: 2*$frac < 1
  }

  if ($n <= 1) {
    if ($n == 1) {
      return (0,0);
    } else {
      return;
    }
  }

  # d is the two-row group number, y=2*d+1, where n belongs
  #
  my $d = int ((sqrt(8*$n-15)-1)/4);
  $n -= ((2*$d + 1)*$d + 2);   # remainder
  ### $d
  ### remainder: $n

  if ($self->{'mirror'}) {
    if ($n <= $d) {
      ### right solid: $n
      return ($frac + $n - 2*$d - 1,
              2*$d+1);
    }
    $n -= $d+1;

    if ($n < int(2*$d/3)) {
      ### right 2/3: $n
      return ($frac + int(3*$n/2) - $d + 1,
              2*$d+1);
    }
    $n -= int(2*$d/3);

    if ($n < int(($d+2)/3)) {
      ### left 1/3: $n
      return ($frac + 3*$n + ((2+$d)%3),
              2*$d+1);
    }
    $n -= int(($d+2)/3);

    if ($n < $d) {
      ### left solid: $n
      return ($frac + $n + $d+2,
              2*$d+1);
    }
    $n -= $d;

    if ($n < int((2*$d+5)/3)) {
      ### odd 2/3: $n
      return ($frac + int((3*$n)/2) - $d +  - 1,
              2*$d+2);
    }
    $n -= int((2*$d+5)/3);

    ### odd 1/3: $n
    return ($frac + 3*$n + ($d%3) + 1,
            2*$d+2);

  } else {
    if ($n < $d) {
      ### left solid: $n
      return ($frac + $n - 2*$d - 1,
              2*$d+1);
    }
    $n -= $d;

    if ($n < int(($d+2)/3)) {
      ### left 1/3: $n
      return ($frac + 3*$n - $d + 1,
              2*$d+1);
    }
    $n -= int(($d+2)/3);

    if ($n < int(2*$d/3)) {
      ### right 2/3: $n
      return ($frac + $n + int(($n+(-$d%3))/2) + 1,
              2*$d+1);
    }
    $n -= int(2*$d/3);

    if ($n <= $d) {
      ### right solid: $n
      return ($frac + $d + $n + 1,
              2*$d+1);
    }
    $n -= $d+1;

    if ($n < int(($d+4)/3)) {
      ### odd 1/3: $n
      return ($frac + 3*$n - $d - 1,
              2*$d+2);
    }
    $n -= int(($d+4)/3);

    ### odd 2/3: $n
    return ($frac + $n + int(($n+((1-$d)%3))/2) + 1,
            2*$d+2);
  }
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  ### CellularRule57 xy_to_n(): "$x,$y"

  if ($y < 0
      || $x < -$y
      || $x > $y) {
    ### outside pyramid region ...
    return undef;
  }

  if ($self->{'mirror'}) {
    # mirrored, rule 99

    if ($y % 2) {
      my $d = ($y+1)/2;
      ### odd row, solids, d: $d

      if ($x < -$d) {
        return ($y+1)*$y/2 + $x + 1 + $self->{'n_start'};
      }
      if ($x < 0) {
        ### mirror left 2 of 3 ...
        if (($x += $d+2) % 3) {
          return ($y+1)*$y/2 + $x-int($x/3) - $d + $self->{'n_start'} - 1;
        }
      } elsif ($x > $d) {
        return ($y+1)*$y/2 + $x - $d + $self->{'n_start'};
      } else {
        ### mirror right 1 of 3 ...
        $x += 2-$d;
        unless ($x % 3) {
          return ($y+1)*$y/2 + $x/3 + $self->{'n_start'};
        }
      }

    } else {
      ### even row, sparse ...
      my $d = $y/2;
      if ($x >= 0) {
        ### mirror sparse right 1 of 3 ...
        if ($x <= $d  # only to half way
            && (($x -= $d) % 3) == 0) {
          return ($y+1)*$y/2 + $x/3 + $self->{'n_start'};
        }
      } else { # $x < 0
        ### mirror sparse left 2 of 3 ...
        if ($x >= -$d  # only to half way
            && (($x += $d+1) % 3)) {
          return ($y+1)*$y/2 + $x-int($x/3) - $d + $self->{'n_start'} - 1;
        }
      }
    }
  } else {
    # unmirrored, rule 57

    if ($y % 2) {
      my $d = ($y+1)/2;
      ### odd row, solids, d: $d

      if ($x <= -$d) {
        ### solid left ...
        if ($x < -$d) {  # always skip the -$d cell
          return ($y+1)*$y/2 + $x + 1 + $self->{'n_start'};
        }
      } elsif ($x <= 0) {
        ### 1 of 3 ...
        unless (($x += $d+1) % 3) {
          return ($y+1)*$y/2 + $x/3 - $d + $self->{'n_start'};
        }
      } elsif ($x >= $d) {
        ### solid right ...
        return ($y+1)*$y/2 + $x - $d + $self->{'n_start'};
      } else {
        ### 2 of 3 ...
        $x += 1-$d;
        if ($x % 3) {
          return ($y+1)*$y/2 + $x-int($x/3) + $self->{'n_start'};
        }
      }

    } else {
      ### even row, sparse ...

      my $d = $y/2;
      if ($x > 0) {
        ### right 2 of 3 ...
        if ($x <= $d  # goes to half way only
            && (($x -= $d+1) % 3)) {
          return ($y+1)*$y/2 + $x-int($x/3) + 1 + $self->{'n_start'};
        }
      } else { # $x <= 0
        ### left 1 of 3 ...
        if (($x += $d) >= 0   # goes to half way only
            && ! ($x % 3)) {
          return ($y+1)*$y/2 + $x/3 - $d + $self->{'n_start'};
        }
      }
    }
  }
  return undef;
}

# left edge ((2*$d + 1)*$d + 2)
# where y=2*d+1
#       d=floor((y-1)/2)
# left N = (2*floor((y-1)/2) + 1)*floor((y-1)/2) + 2
#        = (yodd + 1)*yodd/2 + 2


# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### CellularRule57 rect_to_n_range(): "$x1,$y1, $x2,$y2"

  ($x1,$y1, $x2,$y2) = _rect_for_V ($x1,$y1, $x2,$y2)
    or return (1,0); # rect outside pyramid

  my $zero = ($x1 * 0 * $y1 * $x2 * $y2);  # inherit bignum

  $y1 -= ! ($y1 % 2);
  $y2 -= ! ($y2 % 2);
  return ($zero + ($y1 < 1
                   ? $self->{'n_start'}
                   : ($y1-1)*$y1/2 + 1 + $self->{'n_start'}),
          $zero + ($y2+2)*($y2+1)/2 + $self->{'n_start'});
}

1;
__END__

=for stopwords straight-ish Ryde Math-PlanePath ie hexagonals 18-gonal Xmax-Xmin Nleft Nright OEIS

=head1 NAME

Math::PlanePath::CellularRule57 -- cellular automaton 57 and 99 points

=head1 SYNOPSIS

 use Math::PlanePath::CellularRule57;
 my $path = Math::PlanePath::CellularRule57->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Wolfram, Stephen>This is the pattern of Stephen Wolfram's "rule 57"
cellular automaton

=over

L<http://mathworld.wolfram.com/ElementaryCellularAutomaton.html>

=back

arranged as rows

=cut

# math-image --path=CellularRule57 --all --output=numbers --size=132x50

=pod

                51       52       53 54    55 56                 10
    38 39 40 41       42       43    44 45    46 47 48 49 50      9
                   33       34    35    36 37                     8
          23 24 25       26       27 28    29 30 31 32            7
                      19       20    21 22                        6
                12 13       14    15    16 17 18                  5
                          9       10 11                           4
                       5        6     7  8                        3
                             3     4                              2
                                   2                              1
                                1                             <- Y=0

    -9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7  8  9

X<Triangular numbers>The triangular numbers N=10,15,21,28,etc, k*(k+1)/2,
make a 1/2 sloping diagonal upwards.

On rows with odd Y there's a solid block at either end then 1 of 3 cells to
the left and 2 of 3 to the right of the centre.  On even Y rows there's
similar 1 of 3 and 2 of 3 middle parts, but without the solid ends.  Those 1
of 3 and 2 of 3 are successively offset so as to make lines going up towards
the centre as can be seen in the following plot.

=cut

# math-image --text --path=CellularRule57 --all

=pod

    ***********  *  *  *  * * ** ** ** ************
                *  *  *  *  ** ** ** **
      **********  *  *  *  * ** ** ** ***********
                 *  *  *  * * ** ** **
        *********  *  *  *  ** ** ** **********
                  *  *  *  * ** ** **
          ********  *  *  * * ** ** *********
                   *  *  *  ** ** **
            *******  *  *  * ** ** ********
                    *  *  * * ** **
              ******  *  *  ** ** *******
                     *  *  * ** **
                *****  *  * * ** ******
                      *  *  ** **
                  ****  *  * ** *****
                       *  * * **
                    ***  *  ** ****
                        *  * **
                      **  * * ***
                         *  **
                        *  * **
                          * *
                            *
                           *

=head2 Mirror

The C<mirror =E<gt> 1> option gives the mirror image pattern which is "rule
99".  The point numbering shifts but the total points on each row is the
same.

=cut

# math-image --path=CellularRule57,mirror=1 --all --output=numbers --size=132x50

=pod

                51 52    53 54       55       56                  10
    38 39 40 41 42    43 44    45       46       47 48 49 50       9 
                   33 34    35    36       37                      8 
          23 24 25 26    27 28       29       30 31 32             7 
                      19 20    21       22                         6 
                12 13 14    15    16       17 18                   5 
                          9 10       11                            4 
                       5  6     7        8                         3 
                             3     4                               2 
                             2                                     1 
                                1                              <- Y=0

    -9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7  8  9

=head2 N Start

The default is to number points starting N=1 as shown above.  An optional
C<n_start> can give a different start, in the same pattern.  For example to
start at 0,

=cut

# math-image --path=CellularRule57,n_start=0 --all --output=numbers --size=75x8
# math-image --path=CellularRule57,n_start=0,mirror=1 --all --output=numbers --size=75x8

=pod

    n_start => 0

    22 23 24       25       26 27    28 29 30 31
                18       19    20 21            
          11 12       13    14    15 16 17      
                    8        9 10               
                 4        5     6  7            
                       2     3                  
                             1                  
                          0                     

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::CellularRule57-E<gt>new ()>

=item C<$path = Math::PlanePath::CellularRule57-E<gt>new (mirror =E<gt> $bool, n_start =E<gt> $n)>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  C<$x> and C<$y> are each
rounded to the nearest integer, which has the effect of treating each cell
as a square of side 1.  If C<$x,$y> is outside the pyramid or on a skipped
cell the return is C<undef>.

=back

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::CellularRule>,
L<Math::PlanePath::CellularRule54>,
L<Math::PlanePath::CellularRule190>,
L<Math::PlanePath::PyramidRows>

L<http://mathworld.wolfram.com/ElementaryCellularAutomaton.html>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut