This file is indexed.

/usr/share/perl5/Math/PlanePath/CellularRule54.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

# math-image --path=CellularRule54 --all --scale=10
# math-image --path=CellularRule54 --all --output=numbers --size=132x50

package Math::PlanePath::CellularRule54;
use 5.004;
use strict;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem = \&Math::PlanePath::_divrem;

use Math::PlanePath::Base::Generic
  'round_nearest';

# uncomment this to run the ### lines
#use Smart::Comments;


use constant parameter_info_array =>
  [ Math::PlanePath::Base::Generic::parameter_info_nstart1(),
  ];

use constant class_y_negative => 0;
use constant n_frac_discontinuity => .5;
sub x_negative_at_n {
  my ($self) = @_;
  return $self->n_start + 1;
}
use constant sumxy_minimum => 0;  # triangular X>=-Y so X+Y>=0
use constant diffxy_maximum => 0; # triangular X<=Y so X-Y<=0
use constant dx_maximum => 4;
use constant dy_minimum => 0;
use constant dy_maximum => 1;
use constant absdx_minimum => 1;
use constant dsumxy_maximum => 4;  # straight East dX=+4
use constant ddiffxy_maximum => 4; # straight East dX=+4
use constant dir_maximum_dxdy => (-1,0); # supremum, West and dY=+1 up


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new (@_);
  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }
  return $self;
}
#            left   add
# even  y=0    0     1
#         2    1     2
#         4    3     3
#         6    6     4
# left = y/2*(y/2+1)/2
#      = y*(y+2)/8   of 4-cell figures
# inverse y = -1 + sqrt(2 * $n + -1)
#
#            left   add
# odd   y=1    0     3
#         3    3     6
#         5    9     9
#         7   18    12
# left = 3*(y-1)/2*((y-1)/2+1)/2
#      = 3*(y-1)*(y+1)/8     of 4-cell figures
#
# nbase y even = y*(y+2)/8 + 3*((y+1)-1)*((y+1)+1)/8
#              = [ y*(y+2) + 3*y*(y+2) ] / 8
#              = y*(y+2)/2
# y=0  nbase=0
# y=2  nbase=4
# y=4  nbase=12
# y=6  nbase=24
#
# nbase y odd = 3*(y-1)*(y+1)/8  + (y+1)*(y+3)/8
#             = (y+1) * (3y-3 + y+3)/8
#             = (y+1)*4y/8
#             = y*(y+1)/2
# y=1  nbase=1
# y=3  nbase=6
# y=5  nbase=15
# y=7  nbase=28
# inverse y = -1/2 + sqrt(2 * $n + -7/4)
#           = sqrt(2n-7/4) - 1/2
#           = (2*sqrt(2n-7/4) - 1)/2
#           = (sqrt(4n-7)-1)/2
#
# dual
# d = [ 0, 1,  2,  3 ]
# N = [ 1, 5, 13, 25 ]
# N = (2 d^2 + 2 d + 1)
#   = ((2*$d + 2)*$d + 1)
# d = -1/2 + sqrt(1/2 * $n + -1/4)
#   = sqrt(1/2 * $n + -1/4) - 1/2
#   = [ 2*sqrt(1/2 * $n + -1/4) - 1 ] / 2
#   = [ sqrt(4/2 * $n + -4/4) - 1 ] / 2
#   = [ sqrt(2*$n - 1) - 1 ] / 2
#

sub n_to_xy {
  my ($self, $n) = @_;
  ### CellularRule54 n_to_xy(): $n

  $n = $n - $self->{'n_start'}; # to N=0 basis
  my $frac;
  {
    my $int = int($n);
    $frac = $n - $int;
    $n = $int;       # BigFloat int() gives BigInt, use that
    if (2*$frac >= 1) {  # $frac>=0.5 and BigInt friendly
      $frac -= 1;
      $n += 1;
    }
    # -0.5 <= $frac < 0.5
    ### assert: $frac >= -0.5
    ### assert: $frac < 0.5
  }

  if ($n < 0) {
    return;
  }

  # d is the two-row group number, d=2*y, where n belongs
  # start of the two-row group is nbase = 2 d^2 + 2 d starting from N=0 
  #
  my $d = int((sqrt(2*$n+1) - 1) / 2);
  $n -= (2*$d + 2)*$d;   # remainder within two-row
  ### $d
  ### remainder: $n
  if ($n <= $d) {
    # d+1 many points in the Y=0,2,4,6 etc even row, spaced 4*n apart
    $d *= 2;    # y=2*d
    return ($frac + 4*$n - $d,
            $d);
  } else {
    # 3*d many points in the Y=1,3,5,7 etc odd row, using 3 in 4 cells
    $n -= $d+1;    # remainder 0 upwards into odd row
    $d = 2*$d+1;   # y=2*d+1
    my ($q) = _divrem($n,3);
    return ($frac + $n + $q - $d,
            $d);
  }
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  ### CellularRule54 xy_to_n(): "$x,$y"

  if ($y < 0
      || $x < -$y
      || $x > $y) {
    return undef;
  }
  $x += $y;
  ### x centred: $x
  if ($y % 2) {
    ### odd row, 3 in 4 ...
    if (($x % 4) == 3) {
      return undef;
    }
    return $x - int($x/4) + $y*($y+1)/2 + $self->{'n_start'};
  } else {
    ## even row, sparse ...
    if ($x % 4) {
      return undef;
    }
    return $x/4 + $y*($y+2)/2 + $self->{'n_start'};
  }
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### CellularRule54 rect_to_n_range(): "$x1,$y1, $x2,$y2"

  ($x1,$y1, $x2,$y2) = _rect_for_V ($x1,$y1, $x2,$y2)
    or return (1,0); # rect outside pyramid

  my $zero = ($x1 * 0 * $y1 * $x2 * $y2);  # inherit bignum

  # nbase y even y*(y+2)/2
  # nbase y odd  y*(y+1)/2
  # y even end (y+1)*(y+2)/2
  # y odd end  (y+1)*(y+3)/2

  $y2 += 1;
  return (# even/odd left end
          $zero + $y1*($y1 + 2-($y1%2))/2 + $self->{'n_start'},

          # even/odd right end
          $zero + $y2*($y2 + 2-($y2%2))/2 + $self->{'n_start'} - 1);
}

# Return ($x1,$y1, $x2,$y2) which is the rectangle part chopped to the top
# row entirely within the pyramid V and the bottom row partly within.
#
sub _rect_for_V {
  my ($x1,$y1, $x2,$y2) = @_;
  ### _rect_for_V(): "$x1,$y1, $x2,$y2"

  $y1 = round_nearest ($y1);
  $y2 = round_nearest ($y2);
  if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); } # swap to y1<=y2

  unless ($y2 >= 0) {
    ### rect all negative, no N ...
    return;
  }
  unless ($y1 >= 0) {
    # increase y1 to zero, including negative infinity discarded
    $y1 = 0;
  }

  $x1 = round_nearest ($x1);
  $x2 = round_nearest ($x2);
  if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); } # swap to x1<=x2
  my $neg_y2 = -$y2;

  #     \        /
  #   y2 \      / +-----
  #       \    /  |
  #        \  /
  #         \/    x1
  #
  #        \        /
  #   ----+ \      /  y2
  #       |  \    /
  #           \  /
  #       x2   \/
  #
  if ($x1 > $y2            # off to the right
      || $x2 < $neg_y2) {  # off to the left
    ### rect all off to the left or right, no N
    return;
  }

  #     \        /  x2
  #      \   +------+ y2
  #       \  | /    |
  #        \ +------+
  #         \/
  #
  if ($x2 > $y2) {
    ### top-right beyond pyramid, reduce ...
    $x2 = $y2;
  }

  #
  #    x1  \        /
  # y2 +--------+  /  y2
  #    |     \  | /
  #    +--------+/
  #            \/
  #
  if ($x1 < $neg_y2) {
    ### top-left beyond pyramid, increase ...
    $x1 = $neg_y2;
  }

  #     \       | /
  #      \      |/
  #       \    /|       |
  #    y1  \  / +-------+
  #         \/  x1
  #
  #        \|       /
  #         \      /
  #         |\    /
  #  -------+ \  /   y1
  #        x2  \/
  #
  # in both of the following y1=x2 or y1=-x2 leaves y1<=y2 because have
  # already established some part of the rectangle is in the V shape
  #
  if ($x1 > $y1) {
    ### x1 off to the right, so y1 row is outside, increase y1 ...
    $y1 = $x1;

  } elsif ((my $neg_x2 = -$x2) > $y1) {
    ### x2 off to the left, so y1 row is outside, increase y1 ...
    $y1 = $neg_x2;
  }

  # values ordered
  ### assert: $x1 <= $x2
  ### assert: $y1 <= $y2

  # top row x1..x2 entirely within pyramid
  ### assert: $x1 >= -$y2
  ### assert: $x2 <= $y2

  # bottom row x1..x2 some part within pyramid
  ### assert: $x1 <= $y1
  ### assert: $x2 >= -$y1

  return ($x1,$y1, $x2,$y2);
}

1;
__END__

=for stopwords straight-ish Ryde Math-PlanePath ie hexagonals 18-gonal Xmax-Xmin Nleft Nright OEIS

=head1 NAME

Math::PlanePath::CellularRule54 -- cellular automaton points

=head1 SYNOPSIS

 use Math::PlanePath::CellularRule54;
 my $path = Math::PlanePath::CellularRule54->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Wolfram, Stephen>This is the pattern of Stephen Wolfram's "rule 54"
cellular automaton

=over

L<http://mathworld.wolfram.com/Rule54.html>

=back

arranged as rows,

    29 30 31  . 32 33 34  . 35 36 37  . 38 39 40     7
       25  .  .  . 26  .  .  . 27  .  .  . 28        6
          16 17 18  . 19 20 21  . 22 23 24           5
             13  .  .  . 14  .  .  . 15              4
                 7  8  9  . 10 11 12                 3
                    5  .  .  .  6                    2
                       2  3  4                       1
                          1                      <- Y=0

    -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7

The initial figure N=1,2,3,4 repeats in two-row groups with 1 cell gap
between figures.  Each two-row group has one extra figure, for a step of 4
more points than the previous two-row.

X<Hexagonal numbers>The rightmost N on the even rows Y=0,2,4,6 etc is the
hexagonal numbers N=1,6,15,28, etc k*(2k-1).  The hexagonal numbers of the
"second kind" 1, 3, 10, 21, 36, etc j*(2j+1) are a steep sloping line
upwards in the middle too.  Those two taken together are the
X<Triangular numbers>triangular numbers 1,3,6,10,15 etc, k*(k+1)/2.

The 18-gonal numbers 18,51,100,etc are the vertical line at X=-3 on every
fourth row Y=5,9,13,etc.

=head2 Row Ranges

The left end of each row is

    Nleft = Y*(Y+2)/2 + 1     if Y even
            Y*(Y+1)/2 + 1     if Y odd

The right end is

    Nright = (Y+1)*(Y+2)/2    if Y even
             (Y+1)*(Y+3)/2    if Y odd

           = Nleft(Y+1) - 1   ie. 1 before next Nleft

The row width Xmax-Xmin is 2*Y but with the gaps the number of visited
points in a row is less than that, being either about 1/4 or 3/4 of the
width on even or odd rows.

    rowpoints = Y/2 + 1        if Y even
                3*(Y+1)/2      if Y odd

For any Y of course the Nleft to Nright difference is the number of points
in the row too

    rowpoints = Nright - Nleft + 1

=head2 N Start

The default is to number points starting N=1 as shown above.  An optional
C<n_start> can give a different start, in the same pattern.  For example to
start at 0,

=cut

# math-image --path=CellularRule54,n_start=0 --all --output=numbers --size=75x6

=pod

    n_start => 0

    15 16 17    18 19 20    21 22 23           5 
       12          13          14              4 
           6  7  8     9 10 11                 3 
              4           5                    2 
                 1  2  3                       1 
                    0                      <- Y=0

    -5 -4 -3 -2 -1 X=0 1  2  3  4  5

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::CellularRule54-E<gt>new ()>

=item C<$path = Math::PlanePath::CellularRule54-E<gt>new (n_start =E<gt> $n)>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  C<$x> and C<$y> are each
rounded to the nearest integer, which has the effect of treating each cell
as a square of side 1.  If C<$x,$y> is outside the pyramid or on a skipped
cell the return is C<undef>.

=back

=head1 OEIS

This pattern is in Sloane's Online Encyclopedia of Integer Sequences in a
couple of forms,

=over

L<http://oeis.org/A118108> (etc)

=back

    A118108    whole-row used cells as bits of a bignum
    A118109    1/0 used and unused cells across rows

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::CellularRule>,
L<Math::PlanePath::CellularRule57>,
L<Math::PlanePath::CellularRule190>,
L<Math::PlanePath::PyramidRows>

L<Cellular::Automata::Wolfram>

L<http://mathworld.wolfram.com/Rule54.html>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut